Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters











Publication year range
1.
J Robot Surg ; 18(1): 251, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869636

ABSTRACT

Robotic surgery with Da Vinci has revolutionized the treatment of several diseases, including prostate cancer; nevertheless, costs remain the major drawback. Recently, new robotic platforms entered the market aiming to reduce costs and improve the access to robotic surgery. The aim of the study is to compare direct cost for initial hospital stay of radical prostatectomy performed with two different robotic systems, the Da Vinci and the new Hugo RAS system. This is a projection study that applies cost of robotic surgery, derived from a local tender, to the clinical course of robotic radical prostatectomy (RALP) performed with Da Vinci and Hugo RAS. The study was performed in a public referral center for robotic surgery equipped with both systems. The cost of robotic surgery from a local tender were considered and included rent, annual maintenance, and a per-procedure fee covering the setup of four robotic instruments. Those costs were applied to patients who underwent RALP with both systems since November 2022. The primary endpoint is to evaluate direct costs of initial hospital stay for Da Vinci and Hugo RAS, by considering equipment costs (as derived from the tender), and costs of theater and of hospitalization. The direct per-procedure cost is €2,246.31 for a Da Vinci procedure and €1995 for a Hugo RALP. In the local setting, Hugo RAS provides 11% of cost saving for RALP. By applying this per-procedure cost to our clinical data, the expenditure for the entire index hospitalization is € 6.7755,1 for Da Vinci and € 6.637,15 for Hugo RALP. The new Hugo RAS system is willing to reduce direct expenditures of robotic surgery for RALP; furthermore, it provides similar peri-operative outcomes compared to the Da Vinci. However, other drivers of costs should be taken into account, such as the duration of OR use-that is more than just console time and may depend on the facility's background and organization. Further variations in direct costs of robotic systems are related to caseload, local agreements and negotiations. Thus, cost comparison of new robotic platform still remains an ongoing issue.


Subject(s)
Costs and Cost Analysis , Length of Stay , Prostatectomy , Prostatic Neoplasms , Robotic Surgical Procedures , Prostatectomy/economics , Prostatectomy/methods , Prostatectomy/instrumentation , Robotic Surgical Procedures/economics , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/instrumentation , Humans , Male , Length of Stay/economics , Prostatic Neoplasms/surgery , Prostatic Neoplasms/economics
2.
J Virol ; 97(10): e0073023, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37712701

ABSTRACT

IMPORTANCE: Herpes simplex virus 1 is an important human pathogen that has been intensively studied for many decades. Nevertheless, the molecular mechanisms regulating its establishment, maintenance, and reactivation from latency are poorly understood. Here, we show that HSV-1-encoded miR-H2 is post-transcriptionally edited in latently infected human tissues. Hyperediting of viral miRNAs increases the targeting potential of these miRNAs and may play an important role in regulating latency. We show that the edited miR-H2 can target ICP4, an essential viral protein. Interestingly, we found no evidence of hyperediting of its homolog, miR-H2, which is expressed by the closely related virus HSV-2. The discovery of post-translational modifications of viral miRNA in the latency phase suggests that these processes may also be important for other non-coding viral RNA in the latency phase, including the intron LAT, which in turn may be crucial for understanding the biology of this virus.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Herpesvirus 1, Human/physiology , Virus Latency/genetics , Viral Proteins/metabolism , Ganglia/metabolism , Trigeminal Ganglion , Virus Activation/genetics
3.
J Neurooncol ; 163(1): 47-59, 2023 May.
Article in English | MEDLINE | ID: mdl-37140883

ABSTRACT

PURPOSE: Patient-derived cancer cell lines can be very useful to investigate genetic as well as epigenetic mechanisms of transformation and to test new drugs. In this multi-centric study, we performed genomic and transcriptomic characterization of a large set of patient-derived glioblastoma (GBM) stem-like cells (GSCs). METHODS: 94 (80 I surgery/14 II surgery) and 53 (42 I surgery/11 II surgery) GSCs lines underwent whole exome and trascriptome analysis, respectively. RESULTS: Exome sequencing revealed TP53 as the main mutated gene (41/94 samples, 44%), followed by PTEN (33/94, 35%), RB1 (16/94, 17%) and NF1 (15/94, 16%), among other genes associated to brain tumors. One GSC sample bearing a BRAF p.V600E mutation showed sensitivity in vitro to a BRAF inhibitor. Gene Ontology and Reactome analysis uncovered several biological processes mostly associated to gliogenesis and glial cell differentiation, S - adenosylmethionine metabolic process, mismatch repair and methylation. Comparison of I and II surgery samples disclosed a similar distribution of mutated genes, with an overrepresentation of mutations in mismatch repair, cell cycle, p53 and methylation pathways in I surgery samples, and of mutations in receptor tyrosine kinase and MAPK signaling pathways in II surgery samples. Unsupervised hierarchical clustering of RNA-seq data produced 3 clusters characterized by distinctive sets of up-regulated genes and signaling pathways. CONCLUSION: The availability of a large set of fully molecularly characterized GCSs represents a valuable public resource to support the advancement of precision oncology for the treatment of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Transcriptome , Proto-Oncogene Proteins B-raf/genetics , Neoplastic Stem Cells/pathology , Precision Medicine , Brain Neoplasms/pathology
4.
Immunity ; 56(5): 979-997.e11, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37100060

ABSTRACT

Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues. ADAR2 was required in the endothelium for the expression of the IL-6 receptor subunit, IL-6 signal transducer (IL6ST; gp130), and subsequently, for IL-6 trans-signaling responses. ADAR2-induced adenosine-to-inosine RNA editing suppressed the Drosha-dependent primary microRNA processing, thereby overwriting the default endothelial transcriptional program to safeguard gp130 expression. This work demonstrates a role for ADAR2 epitranscriptional activity as a checkpoint in IL-6 trans-signaling and immune cell trafficking to sites of tissue injury.


Subject(s)
Interleukin-6 , RNA , Endothelial Cells/metabolism , Cytokine Receptor gp130 , Endothelium/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism
5.
Mech Ageing Dev ; 212: 111807, 2023 06.
Article in English | MEDLINE | ID: mdl-37023929

ABSTRACT

Aging is a physiological and progressive phenomenon in all organisms' life cycle, characterized by the accumulation of degenerative processes triggered by several alterations within molecular pathways. These changes compromise cell fate, resulting in the loss of functions in tissues throughout the body, including the brain. Physiological brain aging has been linked to structural and functional alterations, as well as to an increased risk of neurodegenerative diseases. Post-transcriptional RNA modifications modulate mRNA coding properties, stability, translatability, expanding the coding capacity of the genome, and are involved in all cellular processes. Among mRNA post-transcriptional modifications, the A-to-I RNA editing, m6A RNA Methylation and Alternative Splicing play a critical role in all the phases of a neuronal cell life cycle and alterations in their mechanisms of action significantly contribute to aging and neurodegeneration. Here we review our current understanding of the contribution of A-to-I RNA editing, m6A RNA Methylation, and Alternative Splicing to physiological brain aging process and neurodegenerative diseases.


Subject(s)
Alternative Splicing , Neurodegenerative Diseases , Humans , Methylation , RNA Editing , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , RNA/genetics , RNA, Messenger/metabolism , Brain/metabolism , Aging/genetics
6.
PLoS One ; 17(11): e0275288, 2022.
Article in English | MEDLINE | ID: mdl-36355835

ABSTRACT

Early analyses revealed that dark web marketplaces (DWMs) started offering COVID-19 related products (e.g., masks and COVID-19 tests) as soon as the COVID-19 pandemic started, when these goods were in shortage in the traditional economy. Here, we broaden the scope and depth of previous investigations by considering how DWMs responded to an ongoing pandemic after the initial shock. Our dataset contains listings from 194 DWMs collected until July 2021. We start by focusing on vaccines. We find 248 listings offering approved vaccines, like Pfizer/BioNTech and AstraZeneca, as well as vendors offering fabricated proofs of vaccination and COVID-19 passports. Then, we consider COVID-19 related products. We show that, as the regular economy has become able to satisfy the demand of these goods, DWMs have decreased their offer. Next, we analyse the profile of vendors of COVID-19 related products and vaccines. We find that most of them are specialized in a single type of listings and are willing to ship worldwide. Finally, we consider a broader set of listings mentioning COVID-19, in order to assess the general impact of the pandemic on the broader activity of DWMs. Among 10,330 such listings, we show that recreational drugs are the most affected among traditional DWMs product, with COVID-19 mentions steadily increasing since March 2020. We anticipate that our results will be of interest to researchers, practitioners, and law enforcement agencies focused on the study and safeguard of public health.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Vaccination , Commerce
7.
Biomolecules ; 12(8)2022 08 19.
Article in English | MEDLINE | ID: mdl-36009036

ABSTRACT

BACKGROUND: Epitranscriptomic mechanisms, such as A-to-I RNA editing mediated by ADAR deaminases, contribute to cancer heterogeneity and patients' stratification. ADAR enzymes can change the sequence, structure, and expression of several RNAs, affecting cancer cell behavior. In glioblastoma, an overall decrease in ADAR2 RNA level/activity has been reported. However, no data on ADAR2 protein levels in GBM patient tissues are available; and most data are based on ADARs overexpression experiments. METHODS: We performed IHC analysis on GBM tissues and correlated ADAR2 levels and patients' overall survival. We silenced ADAR2 in GBM cells, studied cell behavior, and performed a gene expression/editing analysis. RESULTS: GBM tissues do not all show a low/no ADAR2 level, as expected by previous studies. Although, different amounts of ADAR2 protein were observed in different patients, with a low level correlating with a poor patient outcome. Indeed, reducing the endogenous ADAR2 protein in GBM cells promotes cell proliferation and migration and changes the cell's program to an anchorage-independent growth mode. In addition, deep-seq data and bioinformatics analysis indicated multiple RNAs are differently expressed/edited upon siADAR2. CONCLUSION: ADAR2 protein is an important deaminase in GBM and its amount correlates with patient prognosis.


Subject(s)
Adenosine Deaminase , Glioblastoma , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Cell Proliferation , Glioblastoma/genetics , Humans , RNA Editing , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
8.
Nat Commun ; 12(1): 5512, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535666

ABSTRACT

The maintenance of genomic stability requires the coordination of multiple cellular tasks upon the appearance of DNA lesions. RNA editing, the post-transcriptional sequence alteration of RNA, has a profound effect on cell homeostasis, but its implication in the response to DNA damage was not previously explored. Here we show that, in response to DNA breaks, an overall change of the Adenosine-to-Inosine RNA editing is observed, a phenomenon we call the RNA Editing DAmage Response (REDAR). REDAR relies on the checkpoint kinase ATR and the recombination factor CtIP. Moreover, depletion of the RNA editing enzyme ADAR2 renders cells hypersensitive to genotoxic agents, increases genomic instability and hampers homologous recombination by impairing DNA resection. Such a role of ADAR2 in DNA repair goes beyond the recoding of specific transcripts, but depends on ADAR2 editing DNA:RNA hybrids to ease their dissolution.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA/metabolism , Nucleic Acid Hybridization , RNA Editing , RNA/metabolism , Adenosine Deaminase/genetics , BRCA1 Protein/metabolism , Cell Line, Tumor , DNA Helicases/metabolism , Gene Deletion , Genes, Reporter , Genomic Instability , Green Fluorescent Proteins/metabolism , Homologous Recombination/genetics , Humans , Multifunctional Enzymes/metabolism , Protein Stability , RNA Helicases/metabolism , RNA-Binding Proteins/genetics , Replication Protein A/metabolism
9.
Nature ; 592(7856): 799-803, 2021 04.
Article in English | MEDLINE | ID: mdl-33854232

ABSTRACT

Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cyclin D/metabolism , Genomic Instability , S Phase , Animals , Cell Line , Cell Proliferation , Checkpoint Kinase 1/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , DNA Replication , Gene Expression Regulation, Developmental , Genes, Tumor Suppressor , Humans , Mice , Mice, Knockout , Synthetic Lethal Mutations
10.
Genome Biol ; 22(1): 51, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33509238

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) and adenosine-to-inosine (A-to-I) RNA editing are two of the most abundant RNA modification events affecting adenosines in mammals. Both these RNA modifications determine mRNA fate and play a pivotal role in tumor development and progression. RESULTS: Here, we show that METTL3, upregulated in glioblastoma, methylates ADAR1 mRNA and increases its protein level leading to a pro-tumorigenic mechanism connecting METTL3, YTHDF1, and ADAR1. We show that ADAR1 plays a cancer-promoting role independently of its deaminase activity by binding CDK2 mRNA, underlining the importance of ADARs as essential RNA-binding proteins for cell homeostasis as well as cancer progression. Additionally, we show that ADAR1 knockdown is sufficient to strongly inhibit glioblastoma growth in vivo. CONCLUSIONS: Hence, our findings underscore METTL3/ADAR1 axis as a novel crucial pathway in cancer progression that connects m6A and A-to-I editing post-transcriptional events.


Subject(s)
Adenosine Deaminase/genetics , Carcinogenesis/genetics , Glioblastoma/genetics , Methyltransferases/genetics , RNA-Binding Proteins/genetics , Adenosine/metabolism , Adult , Animals , Cell Line, Tumor , Female , Gene Knockdown Techniques , Glioblastoma/pathology , Humans , Male , Mutagenesis , Protein Isoforms , RNA, Messenger/metabolism
11.
EPJ Data Sci ; 10(1): 6, 2021.
Article in English | MEDLINE | ID: mdl-33500876

ABSTRACT

The COVID-19 pandemic has reshaped the demand for goods and services worldwide. The combination of a public health emergency, economic distress, and misinformation-driven panic have pushed customers and vendors towards the shadow economy. In particular, dark web marketplaces (DWMs), commercial websites accessible via free software, have gained significant popularity. Here, we analyse 851,199 listings extracted from 30 DWMs between January 1, 2020 and November 16, 2020. We identify 788 listings directly related to COVID-19 products and monitor the temporal evolution of product categories including Personal Protective Equipment (PPE), medicines (e.g., hydroxyclorochine), and medical frauds. Finally, we compare trends in their temporal evolution with variations in public attention, as measured by Twitter posts and Wikipedia page visits. We reveal how the online shadow economy has evolved during the COVID-19 pandemic and highlight the importance of a continuous monitoring of DWMs, especially now that real vaccines are available and in short supply. We anticipate our analysis will be of interest both to researchers and public agencies focused on the protection of public health.

12.
Methods Mol Biol ; 2181: 253-267, 2021.
Article in English | MEDLINE | ID: mdl-32729085

ABSTRACT

MicroRNAs (miRNAs) are a class of ~22 nt noncoding RNAs playing essential roles in the post-transcriptional regulation of gene expression, cell proliferation, and cell differentiation and are often found deregulated in several diseases including cancer.The A-to-I RNA editing, mediated by ADAR enzymes, is a diffuse post-transcriptional mechanism that converts the genetically coded adenosine (A) into inosine (I) at the RNA level. Among different RNA targets, the ADAR enzymes can also edit miRNA precursors. Specifically, a single nucleotide change (A/I) lying within the mature miRNA can alter the miRNA binding specificity and redirect the edited miRNA to a different mRNA target. In several cancer types a consistent deregulation of A-to-I RNA editing machinery also involves important miRNAs (either oncomiRs or tumor-suppressor miRNAs). Herein we describe a combined in silico and experimental approach for the detection of edited miRNAs and the identification and validation of their target genes potentially involved in cancer progression or invasion.


Subject(s)
MicroRNAs/genetics , Neoplasms/genetics , Oncogenes , RNA Editing/physiology , Sequence Analysis, DNA/methods , Adenosine/analysis , Adenosine/genetics , Animals , Carcinogenesis/genetics , Computational Biology/methods , Humans , Inosine/analysis , Inosine/genetics , MicroRNAs/chemistry , Neoplasms/pathology , Validation Studies as Topic
13.
Sci Adv ; 6(51)2020 12.
Article in English | MEDLINE | ID: mdl-33328237

ABSTRACT

"Code is law" is the founding principle of cryptocurrencies. The security, transferability, availability, and other properties of crypto-assets are determined by the code through which they are created. If code is open source, as is customary for cryptocurrencies, this would prevent manipulations and grant transparency to users and traders. However, this approach considers cryptocurrencies as isolated entities, neglecting possible connections between them. Here, we show that 4% of developers contribute to the code of more than one cryptocurrency and that the market reflects these cross-asset dependencies. In particular, we reveal that the first coding event linking two cryptocurrencies through a common developer leads to the synchronization of their returns. Our results identify a clear link between the collaborative development of cryptocurrencies and their market behavior. More broadly, they reveal a so-far overlooked systemic dimension for the transparency of code-based ecosystems that will be of interest for researchers, investors, and regulators.

14.
Cancers (Basel) ; 12(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066171

ABSTRACT

BACKGROUND: Adenosine to inosine (A-to-I) RNA editing is the most frequent editing event in humans. It converts adenosine to inosine in double-stranded RNA regions (in coding and non-coding RNAs) through the action of the adenosine deaminase acting on RNA (ADAR) enzymes. Long non-coding RNAs, particularly abundant in the brain, account for a large fraction of the human transcriptome, and their important regulatory role is becoming progressively evident in both normal and transformed cells. RESULTS: Herein, we present a bioinformatic analysis to generate a comprehensive inosinome picture in long non-coding RNAs (lncRNAs), using an ad hoc index and searching for de novo editing events in the normal brain cortex as well as in glioblastoma, a highly aggressive human brain cancer. We discovered >10,000 new sites and 335 novel lncRNAs that undergo editing, never reported before. We found a generalized downregulation of editing at multiple lncRNA sites in glioblastoma samples when compared to the normal brain cortex. CONCLUSION: Overall, our study discloses a novel layer of complexity that controls lncRNAs in the brain and brain cancer.

15.
Molecules ; 25(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957732

ABSTRACT

Glioblastoma (GBM) is the most aggressive, infiltrative, and lethal brain tumor in humans. Despite the extensive advancement in the knowledge about tumor progression and treatment over the last few years, the prognosis of GBM is still very poor due to the difficulty of targeting drugs or anticancer molecules to GBM cells. The major challenge in improving GBM treatment implicates the development of a targeted drug delivery system, capable of crossing the blood-brain barrier (BBB) and specifically targeting GBM cells. Aptamers possess many characteristics that make them ideal novel therapeutic agents for the treatment of GBM. They are short single-stranded nucleic acids (RNA or ssDNA) able to bind to a molecular target with high affinity and specificity. Several GBM-targeting aptamers have been developed for imaging, tumor cell isolation from biopsies, and drug/anticancer molecule delivery to the tumor cells. Due to their properties (low immunogenicity, long stability, and toxicity), a large number of aptamers have been selected against GBM biomarkers and tested in GBM cell lines, while only a few of them have also been tested in in vivo models of GBM. Herein, we specifically focus on aptamers tested in GBM in vivo models that can be considered as new diagnostic and/or therapeutic tools for GBM patients' treatment.


Subject(s)
Antineoplastic Agents/chemistry , Aptamers, Nucleotide/chemistry , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Nanocapsules/chemistry , Nucleic Acids/chemistry , Animals , Antineoplastic Agents/pharmacology , Biological Transport , Biomarkers, Tumor/metabolism , Blood-Brain Barrier/metabolism , Brain Neoplasms/diagnostic imaging , Cell Line, Tumor , Drug Compounding , Drug Liberation , Humans , In Vitro Techniques , Molecular Targeted Therapy , SELEX Aptamer Technique
16.
Front Genet ; 11: 194, 2020.
Article in English | MEDLINE | ID: mdl-32211029

ABSTRACT

Massive transcriptome sequencing through the RNAseq technology has enabled quantitative transcriptome-wide investigation of co-/post-transcriptional mechanisms such as alternative splicing and RNA editing. The latter is abundant in human transcriptomes in which million adenosines are deaminated into inosines by the ADAR enzymes. RNA editing modulates the innate immune response and its deregulation has been associated with different human diseases including autoimmune and inflammatory pathologies, neurodegenerative and psychiatric disorders, and tumors. Accurate profiling of RNA editing using deep transcriptome data is still a challenge, and the results depend strongly on processing and alignment steps taken. Accurate calling of the inosinome repertoire, however, is required to reliably quantify RNA editing and, in turn, investigate its biological and functional role across multiple samples. Using real RNAseq data, we demonstrate the impact of different bioinformatics steps on RNA editing detection and describe the main metrics to quantify its level of activity.

17.
Cell Rep ; 30(9): 2963-2977.e6, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130900

ABSTRACT

Memory B cells (MBCs) epitomize the adaptation of the immune system to the environment. We identify two MBC subsets in peripheral blood, CD27dull and CD27bright MBCs, whose frequency changes with age. Heavy chain variable region (VH) usage, somatic mutation frequency replacement-to-silent ratio, and CDR3 property changes, reflecting consecutive selection of highly antigen-specific, low cross-reactive antibody variants, all demonstrate that CD27dull and CD27bright MBCs represent sequential MBC developmental stages, and stringent antigen-driven pressure selects CD27dull into the CD27bright MBC pool. Dynamics of human MBCs are exploited in pregnancy, when 50% of maternal MBCs are lost and CD27dull MBCs transit to the more differentiated CD27bright stage. In the postpartum period, the maternal MBC pool is replenished by the expansion of persistent CD27dull clones. Thus, the stability and flexibility of human B cell memory is ensured by CD27dull MBCs that expand and differentiate in response to change.


Subject(s)
B-Lymphocytes/immunology , Immunologic Memory , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Gene Expression Profiling , Humans , Immunoglobulin Class Switching/genetics , Immunoglobulin Variable Region/genetics , Immunologic Memory/genetics , Infant , Infant, Newborn , Middle Aged , Models, Immunological , Pregnancy , Somatic Hypermutation, Immunoglobulin/genetics , Tissue Donors , Transcription, Genetic
18.
DNA Cell Biol ; 39(3): 343-348, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31999481

ABSTRACT

RNA editing is a process by which nascent RNA transcripts are covalently modified, thus enhancing the complexity of the transcriptome. The most common modifications are deaminations of adenosine to inosine at sites of complex RNA secondary structure, a process that is carried out by the adenosine deaminase acting on double-strand RNA (ADAR) family of RNA editases. Although much has been learned about the ADAR family members since their discovery, very little information on their post-transcriptional regulation has been reported. Similar to most proteins, the ADAR family members are post-translationally modified at multiple sites. We recently reported that members of the AKT kinase family directly phosphorylate ADAR1p110 and ADAR2 on a conserved threonine within the catalytic domain of the protein. Phosphorylation was observed to differentially inhibit the enzymatic activity of the ADAR proteins toward known RNA substrates. The direct downstream involvement of the AKT kinases in multiple major signaling pathways associated with cell survival, growth, glucose metabolism (insulin signaling), and differentiation is well established; thus, the AKT kinases represent a link between ADAR-dependent A-to-I editing and major signal transduction pathways that are necessary for cell maintenance and development.


Subject(s)
Adenosine Deaminase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Editing , RNA-Binding Proteins/metabolism , Signal Transduction , Animals , Humans , Phosphorylation
19.
J Autoimmun ; 106: 102329, 2020 01.
Article in English | MEDLINE | ID: mdl-31493964

ABSTRACT

OBJECTIVE: Adenosine-to-inosine (A-to-I) RNA editing of Alu retroelements is a primate-specific mechanism mediated by adenosine deaminases acting on RNA (ADARs) that diversifies transcriptome by changing selected nucleotides in RNA molecules. We tested the hypothesis that A-to-I RNA editing is altered in rheumatoid arthritis (RA). METHODS: Synovium expression analysis of ADAR1 was investigated in 152 RA patients and 50 controls. Peripheral blood mononuclear cells derived from 14 healthy subjects and 19 patients with active RA at baseline and after 12-week treatment were examined for ADAR1p150 and ADAR1p110 isoform expression by RT-qPCR. RNA editing activity was analysed by AluSx+ Sanger-sequencing of cathepsin S, an extracellular matrix degradation enzyme involved in antigen presentation. RESULTS: ADAR1 was significantly over-expressed in RA synovium regardless of disease duration. Similarly, ADAR1p150 isoform expression was significantly increased in the blood of active RA patients. Individual nucleotide analysis revealed that A-to-I RNA editing rate was also significantly increased in RA patients. Both baseline ADAR1p150 expression and individual adenosine RNA editing rate of cathepsin S AluSx+ decreased after treatment only in those patients with good clinical response. Upregulation of the expression and/or activity of the RNA editing machinery were associated with a higher expression of edited Alu-enriched genes including cathepsin S and TNF receptor-associated factors 1,2,3 and 5. CONCLUSION: A previously unrecognized regulation and role of ADAR1p150-mediated A-to-I RNA editing in post-transcriptional control in RA underpins therapeutic response and fuels inflammatory gene expression, thus representing an interesting therapeutic target.


Subject(s)
Adenosine/genetics , Arthritis, Rheumatoid/genetics , Inosine/genetics , RNA Editing/genetics , RNA/genetics , Adenosine Deaminase/genetics , Female , Gene Expression Regulation/genetics , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Protein Isoforms/genetics , RNA-Binding Proteins/genetics , Transcriptome/genetics , Up-Regulation/genetics
20.
Int J Mol Sci ; 20(11)2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31163577

ABSTRACT

Energetically speaking, ribosome biogenesis is by far the most costly process of the cell and, therefore, must be highly regulated in order to avoid unnecessary energy expenditure. Not only must ribosomal RNA (rRNA) synthesis, ribosomal protein (RP) transcription, translation, and nuclear import, as well as ribosome assembly, be tightly controlled, these events must be coordinated with other cellular events, such as cell division and differentiation. In addition, ribosome biogenesis must respond rapidly to environmental cues mediated by internal and cell surface receptors, or stress (oxidative stress, DNA damage, amino acid depletion, etc.). This review examines some of the well-studied pathways known to control ribosome biogenesis (PI3K-AKT-mTOR, RB-p53, MYC) and how they may interact with some of the less well studied pathways (eIF2α kinase and RNA editing/splicing) in higher eukaryotes to regulate ribosome biogenesis, assembly, and protein translation in a dynamic manner.


Subject(s)
Protein Biosynthesis , Ribosomes/metabolism , Signal Transduction , Animals , Biomarkers , Cell Cycle/genetics , Disease Susceptibility , Eukaryotic Initiation Factor-2/metabolism , Extracellular Space/metabolism , Genes, myc , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Editing , RNA Splicing , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Stress, Physiological , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL