Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Physiol Sci ; 71(1): 7, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33618673

ABSTRACT

BACKGROUND: Currently available tocolytic agents are not effective treatment for preterm labor beyond 48 h. A major reason is the development of maternal side effects which preclude the maintenance of an effective steady-state drug concentration. One strategy that can mitigate these side effects is utilizing synergistic drug combinations to reduce the drug concentrations necessary to elicit a clinical effect. We have previously shown that three anoctamin 1 (ANO1) antagonists mediate potent relaxation of precontracted human uterine smooth muscle (USM). In this study, we aimed to determine whether a combination of sub-relaxatory doses of tocolytic drugs in current clinical use [the L-type voltage-gated calcium channel (VGCC) blocker, nifedipine (NIF); and the ß2-adrenergic (ß2AR) agonist, terbutaline (TRB)] will potentiate USM relaxation with two ANO1 antagonists [benzbromarone (BB) and MONNA (MN)]. OBJECTIVE: This study sought to examine the synergistic potency and mechanistic basis of two ANO1 antagonists with currently available tocolytic drugs. Functional endpoints assessed included relaxation of pre-contracting pregnant human USM tissue, inhibition of intracellular calcium release, and reduction of spontaneous transient inward current (STIC) recordings in human uterine smooth muscle cells. METHODS: Human myometrial strips and primary human USM cells were used in organ bath and calcium flux experiments with different combinations of sub-threshold doses of ANO1 antagonists and terbutaline or nifedipine to determine if ANO1 antagonists potentiate tocolytic drugs. RESULTS: The combination of sub-threshold doses of two ANO1 antagonists and current tocolytic drugs demonstrate a significant degree of synergy to relax human pregnant USM compared to the effects achieved when these drugs are administered individually. CONCLUSION: A combination of sub-threshold doses of VGCC blocker and ß2AR agonist with ANO1 antagonists potentiates relaxation of oxytocin-induced contractility and calcium flux in human USM ex vivo. Our findings may serve as a foundation for novel tocolytic drug combinations.


Subject(s)
Anoctamin-1/antagonists & inhibitors , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Nifedipine/pharmacology , Terbutaline/pharmacology , Uterus/physiology , Benzbromarone/pharmacology , Female , Gene Expression Regulation/drug effects , Humans , Pregnancy , Tissue Culture Techniques , Tocolytic Agents/pharmacology , Uricosuric Agents/pharmacology , ortho-Aminobenzoates/pharmacology
2.
Am J Respir Cell Mol Biol ; 64(1): 59-68, 2021 01.
Article in English | MEDLINE | ID: mdl-33058732

ABSTRACT

Recently, we characterized blue light-mediated relaxation (photorelaxation) of airway smooth muscle (ASM) and implicated the involvement of opsin 3 (OPN3), an atypical opsin. In the present study, we characterized the cellular signaling mechanisms of photorelaxation. We confirmed the functional role of OPN3 in blue light photorelaxation using trachea from OPN3 null mice (maximal relaxation 52 ± 13% compared with wild-type mice 90 ± 4.3%, P < 0.05). We then demonstrated colocalization of OPN3 and Gαs using co-IP and proximity ligation assays in primary human ASM cells, which was further supported by an increase in cAMP in mouse trachea treated with blue light compared with dark controls (23 ± 3.6 vs. 14 ± 2.6 pmol cAMP/ring, P < 0.05). Downstream PKA (protein kinase A) involvement was shown by inhibiting photorelaxation using Rp-cAMPS (P < 0.0001). Moreover, we observed converging mechanisms of desensitization by chronic ß2-agonist exposure in mouse trachea and correlated this finding with colocalization of OPN3 and GRK2 (G protein receptor kinase) in primary human ASM cells. Finally, an overexpression model of OPN1LW (a red light photoreceptor in the same opsin family) in human ASM cells showed an increase in intracellular cAMP levels following red light exposure compared with nontransfected cells (48 ± 13 vs. 13 ± 2.1 pmol cAMP/mg protein, P < 0.01), suggesting a conserved photorelaxation mechanism for wavelengths of light that are more tissue penetrant. Together, these results demonstrate that blue light photorelaxation in ASM is mediated by the OPN3 receptor interacting with Gαs, which increases cAMP levels, activating PKA and modulated by GRK2.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/metabolism , Muscle Relaxation/physiology , Muscle, Smooth/metabolism , Myocytes, Smooth Muscle/metabolism , Rod Opsins/metabolism , Trachea/metabolism , Animals , Cells, Cultured , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Opsins/metabolism , Signal Transduction/physiology
3.
Reprod Sci ; 28(1): 237-251, 2021 01.
Article in English | MEDLINE | ID: mdl-32700284

ABSTRACT

Spontaneous preterm birth (sPTB), a major cause of infant morbidity and mortality, must involve premature cervical softening/dilation for a preterm vaginal delivery to occur. Yet, the mechanism behind premature cervical softening/dilation in humans remains unclear. We previously reported the non-pregnant human cervix contains considerably more cervical smooth muscle cells (CSMC) than historically appreciated and the CSMC organization resembles a sphincter. We hypothesize that premature cervical dilation leading to sPTB may be due to (1) an inherent CSMC contractility defect resulting in sphincter failure and/or (2) altered cervical extracellular matrix (ECM) rigidity which influences CSMC contractility. To test these hypotheses, we utilized immunohistochemistry to confirm this CSMC phenotype persists in the human pregnant cervix and then assessed in vitro arrays of contractility (F:G actin ratios, PDMS pillar arrays) using primary CSMC from pregnant women with and without premature cervical failure (PCF). We show that CSMC from pregnant women with PCF do not have an inherent CSMC contractility defect but that CSMC exhibit decreased contractility when exposed to soft ECM. Given this finding, we used UPLC-ESI-MS/MS to evaluate collagen cross-link profiles in the cervical tissue from non-pregnant women with and without PCF and found that women with PCF have decreased collagen cross-link maturity ratios, which correlates to softer cervical tissue. These findings suggest having soft cervical ECM may lead to decreased CSMC contractile tone and a predisposition to sphincter laxity that contributes to sPTB. Further studies are needed to explore the interaction between cervical ECM properties and CSMC cellular behavior when investigating the pathophysiology of sPTB.


Subject(s)
Cervix Uteri/pathology , Extracellular Matrix/pathology , Myocytes, Smooth Muscle/pathology , Myometrium/pathology , Premature Birth/pathology , Uterine Contraction , Actins/metabolism , Case-Control Studies , Cells, Cultured , Cervix Uteri/metabolism , Cervix Uteri/physiopathology , Collagen/metabolism , Extracellular Matrix/metabolism , Female , Humans , Myocytes, Smooth Muscle/metabolism , Myometrium/metabolism , Myometrium/physiopathology , Phenotype , Pregnancy , Premature Birth/metabolism , Premature Birth/physiopathology
4.
Biomed Opt Express ; 11(10): 5518-5541, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33149968

ABSTRACT

Automatic quantification and visualization of 3-D collagen fiber architecture using Optical Coherence Tomography (OCT) has previously relied on polarization information and/or prior knowledge of tissue-specific fiber architecture. This study explores image processing, enhancement, segmentation, and detection algorithms to map 3-D collagen fiber architecture from OCT images alone. 3-D fiber mapping, histogram analysis, and 3-D tractography revealed fiber groupings and macro-organization previously unseen in uterine tissue samples. We applied our method on centimeter-scale mosaic OCT volumes of uterine tissue blocks from pregnant and non-pregnant specimens revealing a complex, patient-specific network of fibrous collagen and myocyte bundles.

5.
MethodsX ; 7: 101058, 2020.
Article in English | MEDLINE | ID: mdl-32983923

ABSTRACT

The Langendorff-perfused model is a powerful tool to study biological responses in the isolated heart in the absence of confounders. The model has been adapted recently to enable study of the isolated mouse heart and the effects of genetic manipulation. Unfortunately, the small size and fragility of the mouse heart pose significant challenges, limiting application of the Langendorff model to the study of adult mice. Cardiac development is a complex and dynamic process that is incompletely understood. Thus, establishing an isolated-perfused heart model in the newborn mouse would be an important and necessary advance. Here we present a method to successfully cannulate and perfuse the isolated newborn murine heart. We describe the basic and fundamental physiological characteristics of the ex-vivo retrograde-perfused beating neonatal heart in wild-type C57Bl/6 male mice. Our approach will enable future study of the physiological and pharmacological responses of the isolated immature murine heart to enhance knowledge of how developmental cardiac biology impacts health and disease.•The Langendorff model is a powerful tool to study the heart without confounders.•An isolated-perfused newborn murine heart model has yet to be established.•We demonstrate the first successful isolated neonatal murine heart preparation.

6.
Reprod Sci ; 27(9): 1802, 2020 09.
Article in English | MEDLINE | ID: mdl-32671689

ABSTRACT

This article was updated to correct Joy Y. Vink's name in the author listing.

7.
Reprod Sci ; 27(9): 1791-1801, 2020 09.
Article in English | MEDLINE | ID: mdl-32166706

ABSTRACT

Spontaneous preterm birth (sPTB) remains a worldwide healthcare challenge. Preterm labor (PTL) is thought to be the largest reversible cause of sPTB, but current tocolytic therapies are ineffective and associated with systemic side effects from chronic use. Therefore, identifying novel mechanisms that promote human uterine smooth muscle (hUSM) relaxation is essential to improving clinical management of PTL. Here, we aimed to determine if an extraocular opsin receptor (OPN 3,4,5) system is expressed in pregnant hUSM and to characterize how photo-mediated relaxation of pre-contracting hUSM may be facilitated by external application of light. Translational studies were performed with hUSM from healthy late gestation patients (n = 8) and non-pregnant, similarly aged patients undergoing hysterectomy (n = 4). First, RT-PCR screened for mRNA coding for components of the classical extraocular light receptors (OPN 3,4,5). We found a restricted repertoire of opsin receptors (OPN3) expressed in pregnant hUSM tissue. Immunohistochemistry was performed to confirm protein expression. Pre-contracting late gestation hUSM strips were studied in functional organ bath studies to determine if photo-mediated relaxation is intensity or wavelength dependent. Functional organ bath studies revealed acute photo-mediated relaxation occurring in an intensity- and wavelength-dependent manner. Finally, coimmunoprecipitation of OPN3 with Gs following light activation suggests that a component of photo-relaxation occurs via G protein-coupled receptor machinery. This is the first report of light-mediated relaxation of pre-contracted human myometrium. Activation of endogenous light receptors on human myometrium may become a novel, non-invasive tocolytic strategy.


Subject(s)
Myometrium/metabolism , Rod Opsins/metabolism , Uterine Contraction/metabolism , Uterus/metabolism , Female , Humans , Immunohistochemistry , Muscle Relaxation/physiology , Premature Birth/metabolism
8.
J Vasc Res ; 57(3): 113-125, 2020.
Article in English | MEDLINE | ID: mdl-32097943

ABSTRACT

The clinical administration of GABAergic medications leads to hypotension which has classically been attributed to the modulation of neuronal activity in the central and peripheral nervous systems. However, certain types of peripheral smooth muscle cells have been shown to express GABAA receptors, which modulate smooth muscle tone, by the activation of these chloride channels on smooth muscle cell plasma membranes. Limited prior studies demonstrate that non-human large-caliber capacitance blood vessels mounted on a wire myograph are responsive to GABAA ligands. We questioned whether GABAA receptors are expressed in human resistance arteries and whether they modulate myogenic tone. We demonstrate the novel expression of GABAA subunits on vascular smooth muscle from small-caliber human omental and mouse tail resistance arteries. We show that GABAA receptors modulate both plasma membrane potential and calcium responses in primary cultured cells from human resistance arteries. Lastly, we demonstrate functional physiologic modulation of myogenic tone via GABAA receptor activation in human and mouse arteries. Together, these studies demonstrate a previously unrecognized role for GABAA receptors in the modulation of myogenic tone in mouse and human resistance arteries.


Subject(s)
Arteries/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Omentum/blood supply , Receptors, GABA-A/metabolism , Tail/blood supply , Vascular Resistance , Vasoconstriction , Animals , Arteries/drug effects , Calcium Signaling , Cells, Cultured , Female , GABA-A Receptor Agonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , Male , Membrane Potentials , Mice, Inbred C57BL , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Receptors, GABA-A/drug effects , Receptors, GABA-A/genetics , Vasodilation
9.
Ultrasound Med Biol ; 46(1): 149-155, 2020 01.
Article in English | MEDLINE | ID: mdl-31668428

ABSTRACT

The cervix has two biomechanical functions: to remain closed while the fetus develops throughout pregnancy, and to open for delivery of the fetus at full term. This dual function is principally attributed to collagen within the extracellular matrix (ECM). However, recent evidence suggests that other ECM, and non-ECM, components play a role as well. One component is smooth muscle cells arranged circumferentially near the internal os. In this study, we investigate correlations between cervical smooth muscle cell force generation and the effective scatterer diameter (ESD), a quantitative ultrasound parameter directly related to the acoustic impedance distribution and, therefore, a potential biomarker of muscle contractility. Using whole cervical slices (N = 5), we determined significant positive correlations (quantified with Pearson's r) between muscle force generation and ESD immediately after administration of oxytocin (median r = 0.90). In summary, the ESD may prove a useful biomarker for studying structure and function of cervical smooth muscle in vivo.


Subject(s)
Cervix Uteri/diagnostic imaging , Cervix Uteri/physiology , Muscle, Smooth/diagnostic imaging , Muscle, Smooth/physiology , Uterine Contraction , Female , Humans , In Vitro Techniques , Ultrasonography/methods
10.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L287-L295, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31747299

ABSTRACT

TMEM16A (anoctamin 1) is an important calcium-activated chloride channel in airway smooth muscle (ASM). We have previously shown that TMEM16A antagonists such as benzbromarone relax ASM and have proposed TMEM16A antagonists as novel therapies for asthma treatment. However, TMEM16A is also expressed on airway epithelium, and TMEM16A agonists are being investigated as novel therapies for cystic fibrosis. There are theoretical concerns that agonism of TMEM16A on ASM could lead to bronchospasm, making them detrimental as airway therapeutics. The TMEM16A agonist Eact induced a significant contraction of human ASM and guinea pig tracheal rings in an ex vivo organ bath model. Pretreatment with two different TMEM16A antagonists, benzbromarone or T16Ainh-A01, completely attenuated these Eact-induced contractions. Pretreatment with Eact alone augmented the maximum acetylcholine contraction. Pretreatment of A/J mice in vivo with nebulized Eact caused an augmentation of methacholine-induced increases in airway resistance measured by the forced oscillatory technique (flexiVent). Pretreatment with the TMEM16A antagonist benzbromarone significantly attenuated methacholine-induced increases in airway resistance. In in vitro cellular studies, TMEM16A was found to be expressed more abundantly in ASM compared with epithelial cells in culture (8-fold higher in ASM). Eact caused an increase in intracellular calcium in human ASM cells that was completely attenuated by pretreatment with benzbromarone. Eact acutely depolarized the plasma membrane potential of ASM cells, which was attenuated by benzbromarone or nifedipine. The TMEM16A agonist Eact modulates ASM contraction in both ex vivo and in vivo models, suggesting that agonism of TMEM16A may lead to clinically relevant bronchospasm.


Subject(s)
Anoctamin-1/agonists , Anoctamin-1/metabolism , Lung/metabolism , Muscle Tonus , Muscle, Smooth/metabolism , Neoplasm Proteins/agonists , Neoplasm Proteins/metabolism , Acetylcholine/pharmacology , Animals , Anoctamin-1/genetics , Bronchial Hyperreactivity/physiopathology , Bronchoconstriction/drug effects , Calcium/metabolism , Cells, Cultured , Guinea Pigs , Humans , Inositol Phosphates/biosynthesis , Methacholine Chloride/pharmacology , Muscle Contraction/drug effects , Muscle Tonus/drug effects , Neoplasm Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L82-L93, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30284927

ABSTRACT

Nonvisual opsin (OPN) receptors have recently been implicated in blue light-mediated photorelaxation of smooth muscle in various organs. Since photorelaxation has not yet been demonstrated in airway smooth muscle (ASM) or in human tissues, we questioned whether functional OPN receptors are expressed in mouse and human ASM. mRNA, encoding the OPN 3 receptor, was detected in both human and mouse ASM. To demonstrate the functionality of the OPN receptors, we performed wire myography of ex vivo ASM from mouse and human upper airways. Blue light-mediated relaxation of ACh-preconstricted airways was intensity and wavelength dependent (maximum relaxation at 430-nm blue light) and was inhibited by blockade of the large-conductance calcium-activated potassium channels with iberiotoxin. We further implicated OPN receptors as key mediators in functional photorelaxation by demonstrating increased relaxation in the presence of a G protein receptor kinase 2 inhibitor or an OPN chromophore (9- cis retinal). We corroborated these responses in peripheral airways of murine precision-cut lung slices. This is the first demonstration of photorelaxation in ASM via an OPN receptor-mediated pathway.


Subject(s)
Light , Muscle Relaxation , Myocytes, Smooth Muscle/metabolism , Rod Opsins/metabolism , Trachea/metabolism , Animals , Humans , Mice , Myocytes, Smooth Muscle/cytology , Signal Transduction , Trachea/cytology
12.
J Smooth Muscle Res ; 54(0): 28-42, 2018.
Article in English | MEDLINE | ID: mdl-29937453

ABSTRACT

BACKGROUND: Pre-term birth is a major health care challenge throughout the world, and preterm labor represents a potentially reversible component of this problem. Current tocolytics do not improve preterm labor beyond 48 h. We have previously shown that anoctamin 1 (ANO1) channel blockade results in relaxation of pre-contracted human uterine smooth muscle (USM). Three drug classes with reported medicinal effects in humans also have members with ANO1 antagonism. In this study, we compared the ability of representatives from these 3 classes to reduce human USM contractility and excitability. OBJECTIVE: This study sought to examine the comparative potency of 3 ANO1 antagonists on pregnant human USM relaxation, contraction frequency reduction, inhibition of intracellular calcium release and membrane hyperpolarization. METHODS: Experiments were performed using: 1) Ex vivo organ bath (human pregnant tissue), 2) Oxytocin-induced calcium flux (in vitro human USM cells) and 3) Membrane potential assay (in vitro human USM cells). RESULTS: Benzbromarone (BB) demonstrated the greatest potency among the compounds tested with respect to force, frequency inhibition, reducing calcium elevation and depolarizing membrane potential. CONCLUSION: While all 3 ANO1 antagonists attenuate pregnant human uterine tissue contractility and excitability, BB is the most potent tocolytic drug. Our findings may serve as a foundation for future structure-function analyses for novel tocolytic drug development.


Subject(s)
Anoctamin-1/antagonists & inhibitors , Motor Activity/physiology , Muscle Relaxation/physiology , Myocytes, Smooth Muscle/physiology , Myometrium/physiology , Neoplasm Proteins/antagonists & inhibitors , Tocolytic Agents/pharmacology , Uterine Contraction/physiology , Female , Humans , Motor Activity/drug effects , Muscle Relaxation/drug effects , Myocytes, Smooth Muscle/drug effects , Myometrium/drug effects , Oxytocics/pharmacology , Oxytocin/pharmacology , Pregnancy , Uterine Contraction/drug effects
13.
Reprod Sci ; 25(11): 1589-1600, 2018 11.
Article in English | MEDLINE | ID: mdl-29471754

ABSTRACT

BACKGROUND: Spontaneous preterm labor leading to preterm birth is a significant obstetric problem leading to neonatal morbidity and mortality. Current tocolytics are not completely effective and novel targets may afford a therapeutic benefit. OBJECTIVE: To determine whether the anoctamin (ANO) family, including the calcium-activated chloride channel ANO1, is present in pregnant human uterine smooth muscle (USM) and whether pharmacological and genetic modulation of ANO1 modulates USM contraction. METHODS: Reverse transcription-polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunohistochemical staining were done to determine which members of the ANO family are expressed in human USM. Uterine smooth muscle strips were studied in an organ bath to determine whether ANO1 antagonists inhibit oxytocin-induced USM contractions. Anoctamin 1 small interfering RNA (siRNA) knockdown was performed to determine its effect on filamentous-/globular (F/G)-actin ratio, a measurement of actin polymerization's role in promoting smooth muscle contraction. RESULTS: Messenger RNA (mRNA) encoding all members of the ANO family (except ANO7) are expressed in pregnant USM tissue. Anoctamin 1 mRNA expression was decreased 15.2-fold in pregnant USM compared to nonpregnant. Anoctamin 1 protein is expressed in pregnant human USM tissue. Functional organ bath studies with pregnant human USM tissue demonstrated that the ANO1 antagonist benzbromarone attenuates the force and frequency of oxytocin-induced contractions. In human USM cells, siRNA knockdown of ANO1 decreases F-/G-actin ratios. CONCLUSION: Multiple members of the ANO family, including the calcium-activated chloride channel ANO1, are expressed in human USM. Antagonism of ANO1 by pharmacological inhibition and genetic knockdown leads to an attenuation of contraction in pregnant human USM. Anoctamin 1 is a potentially novel target for tocolysis.


Subject(s)
Anoctamin-1/metabolism , Myometrium/metabolism , Neoplasm Proteins/metabolism , Tocolysis , Uterine Contraction , Actins/metabolism , Anoctamin-1/antagonists & inhibitors , Anoctamins/metabolism , Female , Humans , Neoplasm Proteins/antagonists & inhibitors , Oxytocin/administration & dosage , Pregnancy , Primary Cell Culture , RNA, Messenger/metabolism
15.
Semin Perinatol ; 41(8): 493-504, 2017 12.
Article in English | MEDLINE | ID: mdl-29191291

ABSTRACT

In the United States, the generally accepted indication for tocolytic therapy centers on suppression of preterm labor. This may be in the form of preventative therapy with progesterone in women with prior spontaneous preterm birth or as an acute intervention to suppress established uterine contractions associated with cervical change occurring at less than 37 weeks gestation. This article seeks to apply this perspective to tocolytic therapy. Here, we provide a review of current tocolytic options and what the last decade of discovery has revealed about the regulation of myometrial excitability and quiescence. Moving forward, we must incorporate the emerging molecular data that is amassing in order to develop novel and effective tocolytic therapeutic options to prevent preterm labor and spontaneous preterm birth (sPTB).


Subject(s)
Obstetric Labor, Premature/prevention & control , Premature Birth/prevention & control , Tocolysis/methods , Tocolysis/trends , Tocolytic Agents/therapeutic use , Adult , Female , Humans , Obstetric Labor, Premature/drug therapy , Pregnancy , Premature Birth/drug therapy , Randomized Controlled Trials as Topic , Treatment Outcome
16.
Am J Obstet Gynecol ; 215(4): 478.e1-478.e11, 2016 10.
Article in English | MEDLINE | ID: mdl-27166013

ABSTRACT

BACKGROUND: Premature cervical remodeling resulting in spontaneous preterm birth may begin with premature failure or relaxation at the internal os (termed "funneling"). To date, we do not understand why the internal os fails or why funneling occurs in some cases of premature cervical remodeling. Although the human cervix is thought to be mostly collagen with minimal cellular content, cervical smooth muscle cells are present in the cervix and can cause cervical tissue contractility. OBJECTIVE: To understand why the internal os relaxes or why funneling occurs in some cases of premature cervical remodeling, we sought to evaluate cervical smooth muscle cell content and distribution throughout human cervix and correlate if cervical smooth muscle organization influences regional cervical tissue contractility. STUDY DESIGN: Using institutional review board-approved protocols, nonpregnant women <50 years old undergoing hysterectomy for benign indications were consented. Cervical tissue from the internal and external os were immunostained for smooth muscle cell markers (α-smooth muscle actin, smooth muscle protein 22 calponin) and contraction-associated proteins (connexin 43, cyclooxygenase-2, oxytocin receptor). To evaluate cervical smooth muscle cell morphology throughout the entire cervix, whole cervical slices were obtained from the internal os, midcervix, and external os and immunostained with smooth muscle actin. To correlate tissue structure with function, whole slices from the internal and external os were stimulated to contract with 1 µmol/L of oxytocin in organ baths. In separate samples, we tested if the cervix responds to a common tocolytic, nifedipine. Cervical slices from the internal os were treated with oxytocin alone or oxytocin + increasing doses of nifedipine to generate a dose response and half maximal inhibitory concentration. Student t test was used where appropriate. RESULTS: Cervical tissue was collected from 41 women. Immunohistochemistry showed cervical smooth muscle cells at the internal and external os expressed mature smooth muscle cell markers and contraction-associated proteins. The cervix exhibited a gradient of cervical smooth muscle cells. The area of the internal os contained 50-60% cervical smooth muscle cells that were circumferentially organized in the periphery of the stroma, which may resemble a sphincter-like pattern. The external os contained approximately 10% cervical smooth muscle cells that were randomly scattered in the tissue. In organ bath studies, oxytocin stimulated the internal os to contract with more than double the force of the external os (1341 ± 693 vs 523 ± 536 integrated grams × seconds, respectively, P = .009). Nifedipine significantly decreased cervical tissue muscle force compared to timed vehicle control (oxytocin alone) at doses of 10(-5) mol/L (vehicle 47% ± 15% vs oxytocin + nifedipine 24% ± 16%, P = .007), 10(-4) mol/L (vehicle 46% ± 16% vs oxytocin + nifedipine -4% ± 20%, P = .003), and 10(-3) mol/L (vehicle 42% ± 14% vs oxytocin + nifedipine -15% ± 18%, P = .0006). The half maximal inhibitory concentration for nifedipine was 1.35 × 10(-5) mol/L. CONCLUSION: Our findings suggest a new paradigm for cervical tissue morphology-one that includes the possibility of a specialized sphincter at the internal os. This new paradigm introduces novel avenues to further investigate potential mechanisms of normal and premature cervical remodeling.


Subject(s)
Cervix Uteri/cytology , Myocytes, Smooth Muscle/physiology , Adult , Cervix Uteri/drug effects , Cervix Uteri/physiopathology , Dose-Response Relationship, Drug , Female , Humans , Immunohistochemistry , Middle Aged , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Nifedipine/pharmacology , Oxytocics/pharmacology , Oxytocin/pharmacology , Premature Birth/etiology , Premature Birth/physiopathology , Tocolytic Agents/pharmacology , Uterine Contraction/drug effects
17.
Lung ; 194(3): 401-8, 2016 06.
Article in English | MEDLINE | ID: mdl-26989055

ABSTRACT

INTRODUCTION: γ-amino butyric acid (GABA) is not only the major inhibitory neurotransmitter in the central nervous system (CNS), but it also plays an important role in the lung, mediating airway smooth muscle relaxation and mucus production. As kinases such as protein kinase A (PKA) are known to regulate the release and reuptake of GABA in the CNS by GABA transporters, we hypothesized that ß-agonists would affect GABA release from airway epithelial cells through activation of PKA. METHODS: C57/BL6 mice received a pretreatment of a ß-agonist or vehicle (PBS), followed by methacholine or PBS. Bronchoalveolar lavage (BAL) was collected and the amount of GABA was quantified using HPLC mass spectrometry. For in vitro studies, cultured BEAS-2B human airway epithelial cells were loaded with (3)H-GABA. (3)H-GABA released was measured during activation and inhibition of PKA and tyrosine kinase signaling pathways. RESULTS: ß-agonist pretreatment prior to methacholine challenge attenuated in vivo GABA release in mouse BAL and (3)H-GABA release from depolarized BEAS-2B cells. GABA release was also decreased in BEAS-2B cells by increases in cAMP but not by Epac or tyrosine kinase activation. CONCLUSION: ß-agonists decrease GABA release from airway epithelium through the activation of cAMP and PKA. This has important therapeutic implications as ß-agonists and GABA are important mediators of both mucus production and airway smooth muscle tone.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Epithelial Cells/metabolism , Respiratory Mucosa/metabolism , Terbutaline/pharmacology , gamma-Aminobutyric Acid/metabolism , Adrenergic beta-Antagonists/pharmacology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cell Line , Colforsin/pharmacology , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Enzyme Activators/pharmacology , Glutamate Decarboxylase/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Male , Methacholine Chloride/pharmacology , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/metabolism , Platelet-Derived Growth Factor/pharmacology , Propranolol/pharmacology , RNA, Messenger/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Respiratory Mucosa/cytology , Rifabutin/analogs & derivatives , Rifabutin/pharmacology , Signal Transduction/drug effects , gamma-Aminobutyric Acid/analysis
18.
Am J Physiol Lung Cell Mol Physiol ; 310(8): L747-58, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26773068

ABSTRACT

Enhanced contractility of airway smooth muscle (ASM) is a major pathophysiological characteristic of asthma. Expanding the therapeutic armamentarium beyond ß-agonists that target ASM hypercontractility would substantially improve treatment options. Recent studies have identified naturally occurring phytochemicals as candidates for acute ASM relaxation. Several flavonoids were evaluated for their ability to acutely relax human and murine ASM ex vivo and murine airways in vivo and were evaluated for their ability to inhibit procontractile signaling pathways in human ASM (hASM) cells. Two members of the flavonol subfamily, galangin and fisetin, significantly relaxed acetylcholine-precontracted murine tracheal rings ex vivo (n = 4 and n = 5, respectively, P < 0.001). Galangin and fisetin also relaxed acetylcholine-precontracted hASM strips ex vivo (n = 6-8, P < 0.001). Functional respiratory in vivo murine studies demonstrated that inhaled galangin attenuated the increase in lung resistance induced by inhaled methacholine (n = 6, P < 0.01). Both flavonols, galangin and fisetin, significantly inhibited purified phosphodiesterase-4 (PDE4) (n = 7, P < 0.05; n = 7, P < 0.05, respectively), and PLCß enzymes (n = 6, P < 0.001 and n = 6, P < 0.001, respectively) attenuated procontractile Gq agonists' increase in intracellular calcium (n = 11, P < 0.001), acetylcholine-induced increases in inositol phosphates, and CPI-17 phosphorylation (n = 9, P < 0.01) in hASM cells. The prorelaxant effect retained in these structurally similar flavonols provides a novel pharmacological method for dual inhibition of PLCß and PDE4 and therefore may serve as a potential treatment option for acute ASM constriction.


Subject(s)
Flavonoids/pharmacology , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Phospholipase C beta/antagonists & inhibitors , Animals , Aorta/drug effects , Aorta/physiopathology , Asthma/drug therapy , Bronchoconstriction/drug effects , Calcium Signaling , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Drug Evaluation, Preclinical , Flavonoids/chemistry , Flavonols , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Male , Mice , Muscle Contraction , Muscle, Smooth/physiology , Muscle, Smooth/physiopathology , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/pharmacology , Phospholipase C beta/physiology
19.
Am J Respir Cell Mol Biol ; 54(4): 546-53, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26405827

ABSTRACT

We previously demonstrated that airway smooth muscle (ASM) cells express γ-aminobutyric acid A receptors (GABA(A)Rs), and that GABA(A)R agonists acutely relax ASM. Among the GABA(A)R α subunits, human ASM cells express only α4 and α5, providing the opportunity for selective pharmacologic targeting. Novel GABA(A)R-positive allosteric modulators designed for enhanced α4/α6 subunit selectivity were synthesized using iterative computational analyses (CMD-45 and XHe-III-74). Studies using oocyte heterologous expression systems confirmed that CMD-45 and XHe-III-74 led to significantly greater augmentation of currents induced by a 3% maximal effective concentration (EC3) of GABA [EC3]-induced currents in oocytes expressing α4 or α6 subunits (along with ß3 and γ2) compared with other α subunits. CMD-45 and XHe-III-74 also led to greater ex vivo relaxation of contracted wild-type mouse tracheal rings compared with tracheal rings from GABA(A)R α4 subunit (Gabra4) knockout mice. Furthermore, CMD-45 and XHe-III-74 significantly relaxed precontracted human ASM ex vivo, and, at a low concentration, both ligands led to a significant leftward shift in albuterol-mediated ASM relaxation. In vivo, inhaled XHe-III-74 reduced respiratory system resistance in an asthmatic mouse model. Pretreatment of human ASM cells with CMD-45 and XHe-III-74 inhibited histamine-induced increases in intracellular calcium concentrations in vitro, an effect that was lost when calcium was omitted from the extracellular buffer, suggesting that inhibition of calcium influx due to alterations in plasma membrane potential may play a role in the mechanism of ASM relaxation. Selective targeting of the GABA(A)R α4 subunit with inhaled ligands may be a novel therapeutic pathway to treat bronchoconstriction, while avoiding sedative central nervous system effects, which are largely mediated by α1-3 subunit-containing GABA(A)Rs in the brain.


Subject(s)
Bronchoconstriction/drug effects , Muscle, Smooth/metabolism , Receptors, GABA-A/metabolism , Trachea/metabolism , Animals , Asthma/metabolism , Asthma/physiopathology , Calcium/metabolism , Humans , In Vitro Techniques , Male , Mice , Mice, Knockout , Muscle, Smooth/physiopathology , Trachea/physiopathology , Xenopus laevis
20.
Int J Med Chem ; 2015: 430248, 2015.
Article in English | MEDLINE | ID: mdl-26682068

ABSTRACT

An updated model of the GABA(A) benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A) subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A) α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1) which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM), SH-053-2'F-R-CH3 (2), has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5ß2γ2 Bz/GABA(A) receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1ß2γ2, α2ß2γ2, and α3ß2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A) receptors.

SELECTION OF CITATIONS
SEARCH DETAIL
...