Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Discov Immunol ; 3(1): kyad021, 2024.
Article in English | MEDLINE | ID: mdl-38572449

ABSTRACT

On T cell activation, upregulation of gene expression produces the protein required for the differentiation and proliferation of effector cell populations. RAM (RNMT-Activating Mini protein/RAMAC/Fam103a1), the cofactor of the RNA cap methyltransferase RNMT (RNA guanosine N-7 cap methyltransferase), is upregulated following activation. Formation of the RNA cap protects RNA during synthesis and guides RNA processing and translation. Using conditional gene deletion, we found that Ram expression stabilizes RNMT protein in T cells and is required for its upregulation on activation. When the Ram gene is deleted in naïve T cells, there are major impacts on activation-induced RNA cap formation and gene expression. Activated T cell proliferation is dependent on increased ribosome production; in Ram knockout T cells, activation-induced expression of ribosomal protein genes and snoRNAs is most severely reduced. Consistent with these changes, Ram deletion resulted in reduced protein synthesis, and reduced growth and proliferation of CD4 T cells. Deletion of Ram results in a similar but milder phenotype to Rnmt deletion, supporting the role of RAM as a RNMT cofactor.

2.
Nucleic Acids Res ; 49(12): 6722-6738, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34125914

ABSTRACT

The m7G cap is ubiquitous on RNAPII-transcribed RNA and has fundamental roles in eukaryotic gene expression, however its in vivo role in mammals has remained unknown. Here, we identified the m7G cap methyltransferase, RNMT, as a key mediator of T cell activation, which specifically regulates ribosome production. During T cell activation, induction of mRNA expression and ribosome biogenesis drives metabolic reprogramming, rapid proliferation and differentiation generating effector populations. We report that RNMT is induced by T cell receptor (TCR) stimulation and co-ordinates the mRNA, snoRNA and rRNA production required for ribosome biogenesis. Using transcriptomic and proteomic analyses, we demonstrate that RNMT selectively regulates the expression of terminal polypyrimidine tract (TOP) mRNAs, targets of the m7G-cap binding protein LARP1. The expression of LARP1 targets and snoRNAs involved in ribosome biogenesis is selectively compromised in Rnmt cKO CD4 T cells resulting in decreased ribosome synthesis, reduced translation rates and proliferation failure. By enhancing ribosome abundance, upregulation of RNMT co-ordinates mRNA capping and processing with increased translational capacity during T cell activation.


Subject(s)
Lymphocyte Activation , Methyltransferases/physiology , Protein Biosynthesis , Ribosomes/metabolism , T-Lymphocytes/enzymology , Animals , Gene Knockout Techniques , Guanosine/metabolism , Lymphocyte Activation/genetics , Methyltransferases/biosynthesis , Methyltransferases/genetics , Mice , RNA Caps/chemistry , RNA Caps/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism , RNA-Binding Proteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Up-Regulation
3.
Open Biol ; 10(2): 190306, 2020 02.
Article in English | MEDLINE | ID: mdl-32097574

ABSTRACT

Eukaryotic messenger RNA (mRNA) is modified by the addition of an inverted guanosine cap to the 5' triphosphate. The cap guanosine and initial transcribed nucleotides are further methylated by a series of cap methyltransferases to generate the mature cap structures which protect RNA from degradation and recruit proteins involved in RNA processing and translation. Research demonstrating that the cap methyltransferases are regulated has generated interest in determining the methylation status of the mRNA cap structures present in cells. Here, we present CAP-MAP: cap analysis protocol with minimal analyte processing, a rapid and sensitive method for detecting cap structures present in mRNA isolated from tissues or cultured cells.


Subject(s)
Liver/cytology , Methyltransferases/metabolism , RNA Caps/analysis , Animals , Cells, Cultured , Chromatography, Liquid , Guanosine/metabolism , Liver/chemistry , Mass Spectrometry , Mice , Molecular Structure , RNA Caps/chemistry
4.
Biochim Biophys Acta Gene Regul Mech ; 1862(3): 270-279, 2019 03.
Article in English | MEDLINE | ID: mdl-30312682

ABSTRACT

In this review we explore the regulation of mRNA cap formation and its impact on mammalian cells. The mRNA cap is a highly methylated modification of the 5' end of RNA pol II-transcribed RNA. It protects RNA from degradation, recruits complexes involved in RNA processing, export and translation initiation, and marks cellular mRNA as "self" to avoid recognition by the innate immune system. The mRNA cap can be viewed as a unique mark which selects RNA pol II transcripts for specific processing and translation. Over recent years, examples of regulation of mRNA cap formation have emerged, induced by oncogenes, developmental pathways and during the cell cycle. These signalling pathways regulate the rate and extent of mRNA cap formation, resulting in changes in gene expression, cell physiology and cell function.


Subject(s)
RNA Caps/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Animals , Cell Differentiation , Humans , Nucleotidyltransferases/metabolism , RNA, Messenger/genetics , Signal Transduction
5.
Life Sci Alliance ; 1(3): e201800092, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-30079402

ABSTRACT

CMTR1 contributes to mRNA cap formation by methylating the first transcribed nucleotide ribose at the O-2 position. mRNA cap O-2 methylation has roles in mRNA stabilisation and translation, and self-RNA tolerance in innate immunity. We report that CMTR1 is recruited to serine-5-phosphorylated RNA Pol II C-terminal domain, early in transcription. We isolated CMTR1 in a complex with DHX15, an RNA helicase functioning in splicing and ribosome biogenesis, and characterised it as a regulator of CMTR1. When DHX15 is bound, CMTR1 activity is repressed and the methyl-transferase does not bind to RNA pol II. Conversely, CMTR1 activates DHX15 helicase activity, which is likely to impact several nuclear functions. In HCC1806 breast carcinoma cell line, the DHX15-CMTR1 interaction controls ribosome loading of a subset of mRNAs and regulates cell proliferation. The impact of the CMTR1-DHX15 interaction is complex and will depend on the relative expression of these enzymes and their interactors, and the cellular dependency on different RNA processing pathways.

6.
Nat Immunol ; 18(6): 683-693, 2017 06.
Article in English | MEDLINE | ID: mdl-28394372

ABSTRACT

RNA-binding proteins of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU-rich elements in the 3' untranslated region and promoting mRNA decay. Here we identified an indispensable role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal-zone B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene-expression program related to signaling, cell adhesion and locomotion; it achieved this in part by limiting expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RNA-binding proteins for maintaining cellular identity among closely related cell types.


Subject(s)
B-Lymphocytes/immunology , Cell Adhesion/genetics , Cell Movement/genetics , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics , Animals , Butyrate Response Factor 1 , Cell Adhesion/immunology , Cell Movement/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Regulation/genetics , High-Throughput Nucleotide Sequencing , Interferon Regulatory Factors/genetics , Kruppel-Like Transcription Factors/genetics , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Mice , Nuclear Proteins/immunology , Phenotype , RNA-Binding Proteins/immunology , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Signal Transduction
7.
Article in English | MEDLINE | ID: mdl-28231639

ABSTRACT

Lymphocytes undergo dynamic changes in gene expression as they develop from progenitor cells lacking antigen receptors, to mature cells that are prepared to mount immune responses. While transcription factors have established roles in lymphocyte development, they act in concert with post-transcriptional and post-translational regulators to determine the proteome. Furthermore, the post-transcriptional regulation of RNA regulons consisting of mRNAs whose protein products act cooperatively allows RNA binding proteins to exert their effects at multiple points in a pathway. Here, we review recent evidence demonstrating the importance of RNA binding proteins that control the cell cycle in lymphocyte development and discuss the implications for tumorigenesis. WIREs RNA 2017, 8:e1419. doi: 10.1002/wrna.1419 For further resources related to this article, please visit the WIREs website.


Subject(s)
Cell Cycle/physiology , Lymphocytes/metabolism , Proteome/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Animals , Humans , Lymphocytes/cytology , Proteome/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics
8.
J Immunol ; 197(7): 2673-2685, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27566829

ABSTRACT

The RNA-binding proteins Zfp36l1 and Zfp36l2 act redundantly to enforce the ß-selection checkpoint during thymopoiesis, yet their molecular targets remain largely unknown. In this study, we identify these targets on a genome-wide scale in primary mouse thymocytes and show that Zfp36l1/l2 regulate DNA damage response and cell cycle transcripts to ensure proper ß-selection. Double-negative 3 thymocytes lacking Zfp36l1/l2 share a gene expression profile with postselected double-negative 3b cells despite the absence of intracellular TCRß and reduced IL-7 signaling. Our findings show that in addition to controlling the timing of proliferation at ß-selection, posttranscriptional control by Zfp36l1/l2 limits DNA damage responses, which are known to promote thymocyte differentiation. Zfp36l1/l2 therefore act as posttranscriptional safeguards against chromosomal instability and replication stress by integrating pre-TCR and IL-7 signaling with DNA damage and cell cycle control.


Subject(s)
Cell Cycle , DNA Damage , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Thymocytes/cytology , Tristetraprolin/metabolism , Animals , Butyrate Response Factor 1 , Cell Cycle/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Phenotype , RNA-Binding Proteins/genetics , Thymocytes/metabolism , Tristetraprolin/deficiency , Tristetraprolin/genetics
9.
Science ; 352(6284): 453-9, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27102483

ABSTRACT

Progression through the stages of lymphocyte development requires coordination of the cell cycle. Such coordination ensures genomic integrity while cells somatically rearrange their antigen receptor genes [in a process called variable-diversity-joining (VDJ) recombination] and, upon successful rearrangement, expands the pools of progenitor lymphocytes. Here we show that in developing B lymphocytes, the RNA-binding proteins (RBPs) ZFP36L1 and ZFP36L2 are critical for maintaining quiescence before precursor B cell receptor (pre-BCR) expression and for reestablishing quiescence after pre-BCR-induced expansion. These RBPs suppress an evolutionarily conserved posttranscriptional regulon consisting of messenger RNAs whose protein products cooperatively promote transition into the S phase of the cell cycle. This mechanism promotes VDJ recombination and effective selection of cells expressing immunoglobulin-µ at the pre-BCR checkpoint.


Subject(s)
B-Lymphocytes/cytology , Nuclear Proteins/physiology , RNA-Binding Proteins/physiology , S Phase/physiology , Tristetraprolin/physiology , Animals , Butyrate Response Factor 1 , Conserved Sequence , Cyclins/metabolism , G1 Phase/genetics , G1 Phase/physiology , Gene Expression Regulation , Immunoglobulin mu-Chains/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , Pre-B Cell Receptors , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Resting Phase, Cell Cycle/genetics , Resting Phase, Cell Cycle/physiology , S Phase/genetics , Selection, Genetic , Transcription, Genetic , Tristetraprolin/genetics , V(D)J Recombination
10.
J Exp Med ; 211(11): 2183-98, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25288398

ABSTRACT

A single microRNA (miRNA) can regulate the expression of many genes, though the level of repression imparted on any given target is generally low. How then is the selective pressure for a single miRNA/target interaction maintained across long evolutionary distances? We addressed this problem by disrupting in vivo the interaction between miR-155 and PU.1 in mice. Remarkably, this interaction proved to be key to promoting optimal T cell-dependent B cell responses, a previously unrecognized role for PU.1. Mechanistically, miR-155 inhibits PU.1 expression, leading to Pax5 down-regulation and the initiation of the plasma cell differentiation pathway. Additional PU.1 targets include a network of genes whose products are involved in adhesion, with direct links to B-T cell interactions. We conclude that the evolutionary adaptive selection of the miR-155-PU.1 interaction is exercised through the effectiveness of terminal B cell differentiation.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Differentiation/genetics , MicroRNAs/genetics , PAX5 Transcription Factor/genetics , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , 3' Untranslated Regions , Animals , Antibody Formation/genetics , Antibody Formation/immunology , B-Lymphocytes/immunology , Base Sequence , Binding Sites , Cell Adhesion/genetics , Cell Communication/genetics , Cell Communication/immunology , Gene Expression Regulation , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphopoiesis/genetics , Mice , Mice, Knockout , MicroRNAs/chemistry , Myelopoiesis/genetics , PAX5 Transcription Factor/chemistry , Positive Regulatory Domain I-Binding Factor 1 , Proto-Oncogene Proteins/chemistry , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Trans-Activators/chemistry , Transcription Factors/genetics
11.
Nat Immunol ; 15(6): 484-91, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24840979

ABSTRACT

The rapid changes in gene expression that accompany developmental transitions, stress responses and proliferation are controlled by signal-mediated coordination of transcriptional and post-transcriptional mechanisms. In recent years, understanding of the mechanics of these processes and the contexts in which they are employed during hematopoiesis and immune challenge has increased. An important aspect of this progress is recognition of the importance of RNA-binding proteins and noncoding RNAs. These have roles in the development and function of the immune system and in pathogen life cycles, and they represent an important aspect of intracellular immunity.


Subject(s)
Immune System/immunology , Immunity, Cellular/genetics , Lymphocyte Activation/genetics , RNA, Long Noncoding/genetics , RNA, Small Untranslated/genetics , Animals , Gene Expression/immunology , Hematopoiesis/genetics , Humans , Immunity, Cellular/immunology , Lymphocyte Activation/immunology , Mice , RNA Processing, Post-Transcriptional/genetics , RNA Processing, Post-Transcriptional/immunology , RNA-Binding Proteins/genetics , Signal Transduction/genetics , Transcription, Genetic
12.
J Forensic Sci ; 56(5): 1094-106, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21854376

ABSTRACT

The nonmetric "trait list" methodology is widely used for estimating ancestry of skeletal remains. However, the effects of the method's embedded subjectivity on subsequent accuracy and consistency are largely unknown. We develop a mathematical simulation to test whether variation in the application of the "trait list" method alters the ancestry estimation for a given case. Our simulation explores how variations in (i) trait selection, (ii) number of traits employed, and (iii) ancestry choice thresholds affect the ancestry estimation of an unidentified skeleton. Using two temporally and geographically diverse samples, the simulation demonstrates that trait selection, trait quantity, threshold choices, and the exclusion of high-frequency traits had minimal effect on estimation of general ancestry. For all data sets and Runs, Accuracy(AS) was maintained above 90%. The authors close with a discussion on the logistical issues present when choosing traits, and how to avoid ancestry bias.


Subject(s)
Decision Making , Forensic Anthropology , Models, Theoretical , Racial Groups , Anthropology, Physical , Female , Humans , Male , Skull/anatomy & histology
13.
Nat Immunol ; 11(8): 717-24, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20622884

ABSTRACT

ZFP36L1 and ZFP36L2 are RNA-binding proteins (RBPs) that interact with AU-rich elements in the 3' untranslated region of mRNA, which leads to mRNA degradation and translational repression. Here we show that mice that lacked ZFP36L1 and ZFP36L2 during thymopoiesis developed a T cell acute lymphoblastic leukemia (T-ALL) dependent on the oncogenic transcription factor Notch1. Before the onset of T-ALL, thymic development was perturbed, with accumulation of cells that had passed through the beta-selection checkpoint without first expressing the T cell antigen receptor beta-chain (TCRbeta). Notch1 expression was higher in untransformed thymocytes in the absence of ZFP36L1 and ZFP36L2. Both RBPs interacted with evolutionarily conserved AU-rich elements in the 3' untranslated region of Notch1 and suppressed its expression. Our data establish a role for ZFP36L1 and ZFP36L2 during thymocyte development and in the prevention of malignant transformation.


Subject(s)
Nuclear Proteins/deficiency , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , Tristetraprolin/deficiency , Amino Acid Sequence , Animals , Butyrate Response Factor 1 , Conserved Sequence , Humans , Immunophenotyping , Kaplan-Meier Estimate , Mice , Mice, Knockout , Molecular Sequence Data , Nuclear Proteins/genetics , Nuclear Proteins/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Receptor, Notch1/genetics , Receptor, Notch1/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Sequence Alignment , Thymus Gland/growth & development , Transcription, Genetic , Tristetraprolin/genetics , Tristetraprolin/immunology
14.
J Forensic Sci ; 48(6): 1226-30, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14640264

ABSTRACT

Parity indicators in human skeletal material are highly desirable yet elusive. In this study, the relationships of dorsal pits and pubic tubercle elongation to parity are investigated in a sample of 148 modern female sets of pubic bones with associated birth information. The elongation of the pubic tubercle shows no significant correlation with number of births, but instead is associated with the distance this feature is from the pubic symphysis (p < 0.01) and the size of the arcuate angle (p < 0.05). Dorsal pits show a strong association with increasing numbers of births (p < 0.01), especially in younger women. However, in women over 50 years old, dorsal pitting is correlated with BMI (p < 0.05) and is not significantly correlated with number of births. While this study lends support to the correlation of dorsal pitting and parity, it currently does not reach the level of accuracy needed for forensic applications at the level of the individual.


Subject(s)
Forensic Anthropology/methods , Parity , Pubic Bone/anatomy & histology , Pubic Symphysis/anatomy & histology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Anthropometry , Body Mass Index , Female , Humans , Middle Aged , Pelvimetry , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL