Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 187(4): 2509-2529, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34890463

ABSTRACT

In tip-growing plant cells, growth results from myosin XI and F-actin-mediated deposition of cell wall polysaccharides contained in secretory vesicles. Previous evidence showed that myosin XI anticipates F-actin accumulation at the cell's tip, suggesting a mechanism where vesicle clustering via myosin XI increases F-actin polymerization. To evaluate this model, we used a conditional loss-of-function strategy by generating moss (Physcomitrium patens) plants harboring a myosin XI temperature-sensitive allele. We found that loss of myosin XI function alters tip cell morphology, vacuolar homeostasis, and cell viability but not following F-actin depolymerization. Importantly, our conditional loss-of-function analysis shows that myosin XI focuses and directs vesicles at the tip of the cell, which induces formin-dependent F-actin polymerization, increasing F-actin's local concentration. Our findings support the role of myosin XI in vesicle focusing, possibly via clustering and F-actin organization, necessary for tip growth, and deepen our understanding of additional myosin XI functions.


Subject(s)
Actins/metabolism , Bryopsida/physiology , Myosins/metabolism , Plant Proteins/metabolism , Organelles/physiology
2.
Plant Mol Biol ; 107(4-5): 227-244, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33825083

ABSTRACT

KEY MESSAGE: Here we review, from a quantitative point of view, the cell biology of protonemal tip growth in the model moss Physcomitrium patens. We focus on the role of the cytoskeleton, vesicle trafficking, and cell wall mechanics, including reviewing some of the existing mathematical models of tip growth. We provide a primer for existing cell biological tools that can be applied to the future study of tip growth in moss. Polarized cell growth is a ubiquitous process throughout the plant kingdom in which the cell elongates in a self-similar manner. This process is important for nutrient uptake by root hairs, fertilization by pollen, and gametophyte development by the protonemata of bryophytes and ferns. In this review, we will focus on the tip growth of moss cells, emphasizing the role of cytoskeletal organization, cytoplasmic zonation, vesicle trafficking, cell wall composition, and dynamics. We compare some of the existing knowledge on tip growth in protonemata against what is known in pollen tubes and root hairs, which are better-studied tip growing cells. To fully understand how plant cells grow requires that we deepen our knowledge in a variety of forms of plant cell growth. We focus this review on the model plant Physcomitrium patens, which uses tip growth as the dominant form of growth at its protonemal stage. Because mosses and vascular plants shared a common ancestor more than 450 million years ago, we anticipate that both similarities and differences between tip growing plant cells will provide mechanistic information of tip growth as well as of plant cell growth in general. Towards this mechanistic understanding, we will also review some of the existing mathematical models of plant tip growth and their applicability to investigate protonemal morphogenesis. We attempt to integrate the conclusions and data across cell biology and physical modeling to our current state of knowledge of polarized cell growth in P. patens and highlight future directions in the field.


Subject(s)
Bryophyta/growth & development , Meristem/growth & development , Plant Cells/physiology , Plant Roots/growth & development , Pollen Tube/growth & development , Actin Cytoskeleton/metabolism , Algorithms , Bryophyta/cytology , Bryophyta/metabolism , Meristem/cytology , Meristem/metabolism , Models, Biological , Myosins/metabolism , Plant Cells/metabolism , Plant Proteins/metabolism , Plant Roots/cytology , Plant Roots/metabolism , Pollen Tube/cytology , Pollen Tube/metabolism
3.
Plant Physiol ; 184(2): 607-619, 2020 10.
Article in English | MEDLINE | ID: mdl-32764132

ABSTRACT

RNA interference (RNAi) enables flexible and dynamic interrogation of entire gene families or essential genes without the need for exogenous proteins, unlike CRISPR-Cas technology. Unfortunately, isolation of plants undergoing potent gene silencing requires laborious design, visual screening, and physical separation for downstream characterization. Here, we developed an adenine phosphoribosyltransferase (APT)-based RNAi technology (APTi) in Physcomitrella patens that improves upon the multiple limitations of current RNAi techniques. APTi exploits the prosurvival output of transiently silencing APT in the presence of 2-fluoroadenine, thereby establishing survival itself as a reporter of RNAi. To maximize the silencing efficacy of gene targets, we created vectors that facilitate insertion of any gene target sequence in tandem with the APT silencing motif. We tested the efficacy of APTi with two gene families, the actin-dependent motor, myosin XI (a,b), and the putative chitin receptor Lyk5 (a,b,c). The APTi approach resulted in a homogenous population of transient P. patens mutants specific for our gene targets with zero surviving background plants within 8 d. The observed mutants directly corresponded to a maximal 93% reduction of myosin XI protein and complete loss of chitin-induced calcium spiking in the Lyk5-RNAi background. The positive selection nature of APTi represents a fundamental improvement in RNAi technology and will contribute to the growing demand for technologies amenable to high-throughput phenotyping.


Subject(s)
Genetic Techniques , Multigene Family , RNA Interference , Adenine Phosphoribosyltransferase , Bryopsida , Genes, Plant
4.
Mol Plant Microbe Interact ; 33(7): 911-920, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32240064

ABSTRACT

A characteristic feature of a plant immune response is the increase of the cytosolic calcium (Ca2+) concentration following infection, which results in the downstream activation of immune response regulators. The bryophyte Physcomitrella patens has been shown to mount an immune response when exposed to bacteria, fungi, or chitin elicitation, in a manner similar to the one observed in Arabidopsis thaliana. Nevertheless, whether the response of P. patens to microorganism exposure is Ca2+ mediated is currently unknown. Here, we show that P. patens plants treated with chitin oligosaccharides exhibit Ca2+ oscillations, and that a calcium ionophore can stimulate the expression of defense-related genes. Treatment with chitin oligosaccharides also results in an inhibition of growth, which can be explained by the depolymerization of the apical actin cytoskeleton of tip growing cells. These results suggest that chitin-triggered calcium oscillations are conserved and were likely present in the common ancestor of bryophytes and vascular plants.


Subject(s)
Bryopsida/immunology , Calcium/pharmacology , Chitin/pharmacology , Bryopsida/genetics , Gene Expression Regulation, Plant , Plant Immunity , Plant Proteins/genetics , Plant Proteins/immunology
5.
Methods Mol Biol ; 1992: 307-322, 2019.
Article in English | MEDLINE | ID: mdl-31148047

ABSTRACT

This protocol describes the automated imaging and a quantitative analysis of the morphology of small plants from the moss Physcomitrella patens. This method can be used for the analysis of growth phenotypes produced by transient RNA interference or for the analysis of stable mutant plants. Furthermore, we describe how to acquire higher resolution images via the acquisition of a collection of multiple overlapping tiles from the same image. Information is presented to guide the investigator in the choice of vectors and basic conditions to perform transient RNA interference in moss. Detailed directions and examples for fluorescence image acquisition of small regenerating moss plants are provided. Instructions for stitching image tiles and for using an ImageJ-based macro for the quantitative morphological analysis of moss plants are also provided.


Subject(s)
Bryopsida/cytology , Image Processing, Computer-Assisted/methods , Microscopy/methods , Bryopsida/genetics , Bryopsida/ultrastructure , Cell Polarity , Cell Proliferation , Mutation , RNA Interference , Software
6.
Sci Rep ; 8(1): 13121, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30177820

ABSTRACT

Attaching Unique Molecular Identifiers (UMI) to RNA molecules in the first step of sequencing library preparation establishes a distinct identity for each input molecule. This makes it possible to eliminate the effects of PCR amplification bias, which is particularly important where many PCR cycles are required, for example, in single cell studies. After PCR, molecules sharing a UMI are assumed to be derived from the same input molecule. In our single cell RNA-Seq studies of Physcomitrella patens, we discovered that reads sharing a UMI, and therefore presumed to be derived from the same mRNA molecule, frequently map to different, but closely spaced locations. This behaviour occurs in all such libraries that we have produced, and in multiple other UMI-containing RNA-Seq data sets in the public domain. This apparent paradox, that reads of identical origin map to distinct genomic coordinates may be partially explained by PCR stutter, which is often seen in low-entropy templates and those containing simple tandem repeats. In the absence of UMI this artefact is undetectable. We show that the common assumption that sequence reads having different mapping coordinates are derived from different starting molecules does not hold. Unless taken into account, this artefact is likely to result in over-estimation of certain transcript abundances, depending on the counting method employed.


Subject(s)
Artifacts , Bryopsida/genetics , Gene Expression Regulation, Plant , Genome, Plant , RNA, Messenger/genetics , RNA, Plant/genetics , Sequence Analysis, RNA/methods , Chromosome Mapping , Computational Biology/methods , Gene Library , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...