Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Bioorg Med Chem ; 98: 117558, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38142562

ABSTRACT

Vascular adhesion protein-1 (VAP-1), also known as plasma amine oxidase or semicarbazide-sensitive amine oxidase, is an enzyme that degrades primary amines to aldehydes with the formation of hydrogen peroxide and ammonia. Among others, it plays a role in inflammatory processes as it can mediate the migration of leukocytes from the blood to the inflamed tissue. We prepared a series of ω-(5-phenyl-2H-tetrazol-2-yl)alkyl-substituted glycine amides and related compounds and tested them for inhibition of purified bovine plasma VAP-1. Compounds with submicromolar activity were obtained. Studies on the mechanism of action revealed that the glycine amides are substrate inhibitors, i.e., they are also converted to an aldehyde derivative. However, the reaction proceeds much more slowly than that of the substrate used in the assay, whose conversion is thus blocked. Examination of the selectivity of the synthesized glycine amides with respect to other amine oxidases showed that they inhibited diamine oxidase, which is structurally related to VAP-1, but only to a much lesser extent. In contrast, the activity of monoamine oxidase A and B was not affected. Selected compounds also inhibited VAP-1 in human plasma. The IC50 values measured were higher than those determined with the bovine enzyme. However, the structure-activity relationships obtained with the glycine amides were similar for both enzymes.


Subject(s)
Amine Oxidase (Copper-Containing) , Monoamine Oxidase , Animals , Cattle , Humans , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Amines/pharmacology , Aldehydes , Amine Oxidase (Copper-Containing)/metabolism , Glycine/pharmacology , Amides/pharmacology
2.
Arch Pharm (Weinheim) ; 355(8): e2200111, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35507758

ABSTRACT

Amine oxidase copper containing 3 (AOC3), also known as plasma amine oxidase, semicarbazide-sensitive amine oxidase, or vascular adhesion protein-1, catalyzes the oxidative deamination of primary amines to aldehydes using copper and a quinone as cofactors. Because it is involved in the transmigration of inflammatory cells through blood vessels into tissues, AOC3 is thought to play an important role in inflammatory diseases. Therefore, inhibitors of this enzyme could lead to new therapeutics for the treatment of inflammation-related diseases. Recently, 6-(5-phenyl-2H-tetrazol-2-yl)hexan-1-amine was found to be a tight-binding substrate of AOC3. To obtain novel inhibitors of the enzyme, the amino group of this substrate was replaced with functional groups that occur in known AOC3 inhibitors, such as hydrazide or glycine amide moieties. In addition, derivatives of the compounds obtained in this way were prepared. The obtained hydrazide 5, which proved to be the most effective, was subjected to further structural modifications. Selected hydrazides were evaluated for selectivity toward some other amine oxidases.


Subject(s)
Amine Oxidase (Copper-Containing) , Copper , Amine Oxidase (Copper-Containing)/metabolism , Amines/pharmacology , Copper/pharmacology , Hydrazines/pharmacology , Monoamine Oxidase , Structure-Activity Relationship
3.
J Enzyme Inhib Med Chem ; 34(1): 144-149, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30427224

ABSTRACT

Recently, we have described a method for evaluation of plasma amine oxidase (PAO) inhibitors, which monitors the formation of 6-(5-phenyl-2H-tetrazol-2-yl)hexanal from the corresponding amine substrate by HPLC with UV-detection using purified bovine PAO. We now investigated, whether crude bovine plasma can be used as enzyme source in this assay instead of the purified enzyme. With the aid of specific inhibitors, it was ensured that there was no detectable activity of other important amine oxidases in the plasma, namely monoamine oxidase (MAO) A and B and diamine oxidase (DAO). For a series of ω-(5-phenyl-2H-tetrazol-2-yl)alkan-1-amine substrates similar conversion rates were measured for both the purified PAO and crude plasma. The inhibition values determined for the PAO inhibitor 2-(4-phenylphenyl)acetohydrazide (16) under different conditions also corresponded. Additionally, inhibition data of the known PAO inhibitor 2-amino-N-(3-phenylbenzyl)acetamide (17) and a newly synthesised meta-substituted derivative of 16 were determined, which together reflect the two-step inhibition mechanism of these covalent inhibitors.


Subject(s)
Chromatography, High Pressure Liquid , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/blood , Monoamine Oxidase/metabolism , Plasma/enzymology , Tetrazoles/pharmacology , Ultraviolet Rays , Animals , Cattle , Dose-Response Relationship, Drug , Molecular Structure , Monoamine Oxidase/isolation & purification , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Structure-Activity Relationship , Tetrazoles/chemical synthesis , Tetrazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL