Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 13(9)2021 08 26.
Article in English | MEDLINE | ID: mdl-34564599

ABSTRACT

The alpha (CPA), beta (CPB) and epsilon (ETX) toxins of Clostridium perfringens are responsible for causing diseases that are difficult to eradicate and have lethal potential in production animals. Vaccination of herds is still the best control strategy. Recombinant clostridial vaccines have shown good success at inducing neutralizing antibody titers and appear to be a viable alternative to the conventional production of commercial clostridial toxoids. Research is still needed on the longevity of the humoral immune response induced by recombinant proteins in immunized animals, preferably in target species. The objective of this study was to measure the humoral immune response of cattle immunized with trivalent vaccines containing the recombinant proteins alpha (rCPA), beta (rCPB) and epsilon (rETX) of C. perfringens produced in Escherichia coli at three different concentrations (100, 200, and 400 µg) of each protein for 12 months. The recombinant vaccines containing 200 (RV2) and 400 µg (RV3) yielded statistically similar results at 56 days. They performed better throughout the study period because they induced higher neutralizing antibody titers and were detectable for up to 150 and 180 days, respectively. Regarding industrial-scale production, RV2 would be the most economical and viable formulation as it achieved results similar to RV3 at half the concentration of recombinant proteins in its formulation. However, none of the vaccines tested induced the production of detectable antibody titers on day 365 of the experiment, the time of revaccination typically recommended in vaccination protocols. Thus, reiterating the need for research in the field of vaccinology to achieve greater longevity of the humoral immune response against these clostridial toxins in animals, in addition to the need to discuss the vaccine schedules and protocols adopted in cattle production.


Subject(s)
Antibodies, Neutralizing/blood , Bacterial Toxins/immunology , Cattle Diseases/immunology , Cattle Diseases/prevention & control , Clostridium Infections/immunology , Clostridium Infections/prevention & control , Clostridium perfringens/immunology , Recombinant Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , Bacterial Toxins/toxicity , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Brazil , Cattle , Cattle Diseases/blood , Cattle Diseases/microbiology , Clostridium Infections/veterinary , Recombinant Proteins/administration & dosage
2.
Toxins (Basel) ; 13(8)2021 08 13.
Article in English | MEDLINE | ID: mdl-34437437

ABSTRACT

In horses, Clostridium perfringens is associated with acute and fatal enterocolitis, which is caused by a beta toxin (CPB), and myonecrosis, which is caused by an alpha toxin (CPA). Although the most effective way to prevent these diseases is through vaccination, specific clostridial vaccines for horses against C. perfringens are not widely available. The aim of this study was to pioneer the immunization of horses with three different concentrations (100, 200 and 400 µg) of C. perfringens recombinant alpha (rCPA) and beta (rCPB) proteins, as well as to evaluate the humoral immune response over 360 days. Recombinant toxoids were developed and applied to 50 horses on days 0 and 30. Those vaccines attempted to stimulate the production of alpha antitoxin (anti-CPA) and beta antitoxin (anti-CPB), in addition to becoming innocuous, stable and sterile. There was a reduction in the level of neutralizing anti-CPA and anti-CPB antibodies following the 60th day; therefore, the concentrations of 200 and 400 µg capable of inducing a detectable humoral immune response were not determined until day 180. In practical terms, 200 µg is possibly the ideal concentration for use in the veterinary industry's production of vaccines against the action of C. perfringens in equine species.


Subject(s)
Antigens, Bacterial/administration & dosage , Bacterial Vaccines/administration & dosage , Clostridium Infections/prevention & control , Horse Diseases/prevention & control , Toxoids/administration & dosage , Animals , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Clostridium Infections/veterinary , Clostridium perfringens/immunology , Female , Horses/immunology , Immunity, Humoral , Male , Recombinant Proteins/administration & dosage , Toxoids/genetics , Vaccination
3.
Vaccine ; 38(11): 2519-2526, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32037222

ABSTRACT

Botulism is a paralytic disease caused by the intoxication of neurotoxins produced by Clostridium botulinum. Among the seven immunologically distinct serotypes of neurotoxins (BoNTs A - G), serotypes C and D, or a chimeric fusion termed C/D or D/C, are responsible for animal botulism. The most effective way to prevent botulism in cattle is through vaccination; however, the commercially available vaccines produced by detoxification of native neurotoxins are time-consuming and hazardous. To overcome these drawbacks, a non-toxic recombinant vaccine was developed as an alternative. In this study, the recombinant protein vaccine was produced using an Escherichia coli cell-based system. The formaldehyde-inactivated E. coli is able to induce 7.45 ± 1.77 and 6.6 ± 1.28 IU/mL neutralizing mean titers against BoNTs C and D in cattle, respectively, determined by mouse neutralization bioassay, and was deemed protective by the Brazilian legislation. Moreover, when the levels of anti-BoNT/C and D were compared with those achieved by the recombinant purified vaccines, no significant statistical difference was observed. Cattle vaccinated with the commercial vaccine developed 1.33 and 3.33 IU/mL neutralizing mean titers against BoNT serotypes C and D, respectively. To the best of our knowledge, this study is the first report on recombinant E. coli bacterin vaccine against botulism. The vaccine was safe and effective in generating protective antibodies and, thus, represents an industry-friendly alternative for the prevention of cattle botulism.


Subject(s)
Bacterial Vaccines/immunology , Botulinum Toxins/immunology , Botulism/veterinary , Cattle Diseases/prevention & control , Animals , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Botulism/prevention & control , Brazil , Cattle , Cattle Diseases/microbiology , Clostridium botulinum , Escherichia coli , Mice , Neutralization Tests , Recombinant Proteins/immunology , Vaccines, Synthetic
SELECTION OF CITATIONS
SEARCH DETAIL
...