Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 12(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687289

ABSTRACT

The fall armyworm (Spodoptera frugiperda), a polyphagous insect pest, is a major threat to food production, rapidly spreading through all the tropical areas in the world. Resistance has developed to the control protocols used so far (pyrethroids, organophosphorus, and genetically modified plants), and alternative strategies must be found. The bioactivity in essential oils is usually associated with the major constituents, but synergistic interactions among the constituents (even minor ones) can improve the levels of activity considerably. Herein, we tested the insecticidal activity of several constituents of the essential oil from Piper aduncum, an Amazonian Piperaceae, both separately and as binary mixtures, through their application on the dorsal side of the larva pronotum. Dillapiole proved to be, isolated, the most active compound in this oil (LD50 = 0.35 ppm). In binary mixtures, a strong synergistic effect was observed for the pairs of dillapiole with ß-caryophyllene (LD50 = 0.03 ppm), methyl eugenol (LD50 = 0.05 ppm), and α-humulene (LD50 = 0.05 ppm). In some cases, however, antagonism was recorded, as for dillapiole + ß-pinene (LD50 = 0.44 ppm). The use of binary mixtures of essential oil constituents as low-environmental-toxicity insecticides allows a fine tuning of the insecticidal activity, and the exploitation of synergy effects.

2.
J Parasit Dis ; 42(3): 357-364, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30166782

ABSTRACT

The excessive use of anthelmintics to control nematodes has resulted in anthelminthic resistance. Essential oils (EOs) are a rich source of bioactive molecules that can be assessed for their ability to control resistant parasite populations. The aims of this study were to screen EOs from 10 plant species in vitro for anthelmintic activity against Haemonchus contortus, evaluate the cytotoxicity of those EOs in a human immortalized keratinocyte cell line (HaCaT), and test the most promising EO candidate in vivo in Santa Inês sheep. The efficacy was investigated in vitro using an egg hatch test (EHT) and a larval development test (LDT). EO cytotoxicity was evaluated with the sulforhodamine-B assay. In the in vivo experiment, 28 Santa Inês sheep naturally infected were distributed into groups: G1-Mentha arvensis (EO5), 200 mg kg-1; G2-menthol, 160 mg kg-1; G3-negative control; and G4-positive control (monepantel). EO5, from M. arvensis (86.7% menthol), had the lowest LC50 and LC90 values in the EHT (0.10, 0.27 mg mL-1, respectively), good performance in the LDT (0.015, 0.072 mg mL-1, respectively), and the lowest cytotoxicity (190.9 µg mL-1) in HaCaT cells. In the in vivo test, a single dose of the EO5 (200 mg kg-1 BW) had an efficacy of approximately 50% on days 1, 14, and 21; however, values were not significantly from day 0. Conversely, pure menthol at a dose of 160 mg kg-1 BW showed no in vivo efficacy. This can be attributed to key factors related to bioavailability and pharmacology of terpenes in the host organism, as well as to the fact that menthol is mainly excreted as glucuronides in urine. Thus, further studies should be conducted with formulation systems that deliver bioactives directly to the abomasum, focusing on terpenes, whose excretion route is mainly via faeces.

3.
Can J Infect Dis Med Microbiol ; 2018: 5295619, 2018.
Article in English | MEDLINE | ID: mdl-30073039

ABSTRACT

Piper is the largest genus of the Piperaceae family. The species of this genus have diverse biological activities and are used in pharmacopeia throughout the world. They are also used in folk medicine for treatment of many diseases in several countries including Brazil, China, India, Jamaica, and Mexico. In Brazil, Piper species are distributed throughout the national territory, making this genus a good candidate for biological activity screening. During our studies with Piper essential oils, we evaluated its activity against Rhizopus oryzae, the main agent of mucormycosis. The main compounds of seven Piper essential oils analyzed were Piper callosum-safrole (53.8%), P. aduncum-dillapiole (76.0%), P. hispidinervum-safrole (91.4%), P. marginatum-propiopiperone (13.2%), P. hispidum-γ-terpinene (30.9%), P. tuberculatum-(E)-caryophyllene (30.1%), and Piper sp.-linalool (14.6%). The minimum inhibitory concentration of Piper essential oils against R. oryzae ranged from 78.12 to >1250 µg/mL. The best result of total inhibition of biofilm formation was obtained with Piper sp. starting from 4.88 µg/mL. Considering the bioactive potential of EOs against planktonic cells and biofilm formation of R. oryzae could be of great interest for development of antimicrobials for therapeutic use in treatment of fungal infection.

4.
Phytochemistry ; 136: 141-146, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28143669

ABSTRACT

Protium heptaphyllum (Burseraceae) oleoresins are rich in volatile monoterpenes, exhibiting a chemical composition that can be strongly altered with time. The present work aimed to discuss the temporal change of the volatile composition of these oleoresins, and search for related supporting evidence. Samples of P. heptaphyllum oleoresin were collected separately for fresh (n = 10) and aged (n = 8) oleoresins, with the essential oils obtained by hydrodistillation analyzed by GC-FID and GC-MS. Fresh oleoresins were characterized by a high content of terpinolene (28.2-69.7%), whereas aged ones contained large amounts of p-cymene (18.7-43.0%) and p-cymen-8-ol (8.2-31.8%). Multivariate analyses were performed based on the yield and major essential oil components to clearly demonstrate the existence of two subsets (fresh and aged oleoresins). In addition, an analysis of the partial genome sequencing of the species was carried out, producing the largest amount of data for the genus Protium. Subsequently, were searched for nucleotide sequences responsible for the enzymes involved in the biosynthesis of monoterpenes. Two hypotheses were formulated to understand the oxidation process during aging of the oleoresins: (i) a natural chemical oxidation of terpenes and (ii) an oxidation catalyzed by enzymes produced by microorganisms associated with the plant. The results suggested that terpinolene was most likely oxidized to p-cymene, which, in turn, was oxidized into p-cymen-8-ol during natural aging of the exudate due to abiotic factors.


Subject(s)
Burseraceae/chemistry , Monoterpenes/isolation & purification , Plant Extracts/chemistry , Cyclohexane Monoterpenes , Cymenes , Gas Chromatography-Mass Spectrometry , Monoterpenes/chemistry , Monoterpenes/metabolism , Oils, Volatile/chemistry , Oxidation-Reduction , Terpenes/analysis , Terpenes/metabolism
5.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 6): o1438-9, 2010 May 22.
Article in English | MEDLINE | ID: mdl-21579512

ABSTRACT

In the title hydrated salt, C(15)H(11)Br(2)N(2) (+)·Cl(-)·2H(2)O, the complete imidazolium cation is generated by a crystallographic twofold axis, with one C atom lying on the axis. The chloride ion and both water mol-ecules of crystallization also lie on a crystallographic twofold axis of symmetry. The cation is non-planar, the dihedral angle formed between the central imidazolium and benzene rings being 12.9 (3)°; the dihedral angle between the symmetry-related benzene rings is 25.60 (13)°. In the crystal, O-H⋯Cl hydrogen bonds result in supra-molecular chains along c mediated by eight-membered {⋯HOH⋯Cl}(2) synthons. These are consolidated by C-H⋯O and π-π [centroid-centroid distance = 3.687 (3) Å] inter-actions.

SELECTION OF CITATIONS
SEARCH DETAIL