Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832750

ABSTRACT

Dimerized quantum magnets are exotic crystalline materials where Bose-Einstein condensation of magnetic excitations can happen. However, known dimerized quantum magnets are limited to only a few oxides and halides. Here, we unveil 9 dimerized quantum magnets and 11 conventional antiferromagnets in ternary metal borides MTB4 (M = Sc, Y, La, Ce, Lu, Mg, Ca, and Al; T = V, Cr, Mn, Fe, Co, and Ni), where T atoms are arranged in structural dimers. Quantum magnetism in these compounds is dominated by strong antiferromagnetic (AFM) interactions between Cr (Cr and Mn for M = Mg and Ca) atoms within the dimers, with much weaker interactions between the dimers. These systems are proposed to be close to a quantum critical point between a disordered singlet spin-dimer phase, with a spin gap, and the ordered conventional Néel AFM phase. They greatly enrich the materials inventory that allows investigations of the spin-gap phase. Conventional antiferromagnetism in these compounds is dominated by ferromagnetic Mn (Fe for M = Mg and Ca) interactions within the dimers. The predicted stable and nonmagnetic (NM) YFeB4 phase is synthesized and characterized, providing a scarce candidate to study Fe dimers and Fe ladders in borides. The identified quantum, conventional, and NM systems provide a platform with abundant possibilities to tune the magnetic exchange coupling by doping and study the unconventional quantum phase transition and conventional magnetic transitions. This work opens new avenues for studying novel magnetism in borides arising from spin dimers and establishes a theoretical workflow for future searches for dimerized quantum magnets in other families of materials.

2.
Inorg Chem ; 63(5): 2443-2453, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38252972

ABSTRACT

[Fe(en)(tren)][FeSe2]2 (en = ethylenediamine, C2H8N2, tren = tris(2-aminoethyl)amine, C6H18N4) has been synthesized by a mixed-ligand solvothermal method. Its crystal structure contains heteroleptic [Fe(en)(tren)]2+ complexes with distorted octahedral coordination, incorporated between 1D-FeSe2 chains composed of edge-sharing FeSe4 tetrahedra. The twisted octahedral coordination environment of the Fe-amine complex leads to partial dimerization of Fe-Fe distances in the FeSe2 chains so that the FeSe4 polyhedra deviate strongly from the regular tetrahedral geometry. 57Fe Mössbauer spectroscopy reveals oxidation states of +3 for the Fechain atoms and +2 for the Fecomplex atoms. The close proximity of Fe atoms in the chains promotes ferromagnetic nearest neighbor interactions, as indicated by a positive Weiss constant, θ = +53.8(6) K, derived from the Curie-Weiss fitting. Magnetometry and heat capacity reveal two consecutive magnetic transitions below 10 K. DFT calculations suggest that the ordering observed at 4 K is due to antiferromagnetic intrachain interactions in the 1D-FeSe2 chains. The combination of two different ligands creates an asymmetric coordination environment that induces changes in the structure of the Fe-Se fragments. This synthetic strategy opens new ways to explore the effects of ligand field strength on the structure of both Fe-amine complexes and surrounding Fe-Se chains.

3.
J Am Chem Soc ; 144(25): 11283-11295, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35700396

ABSTRACT

A novel mixed-valent hybrid chiral and polar compound, Fe7As3Se12(en)6(H2O), has been synthesized by a single-step solvothermal method. The crystal structure consists of 1D [Fe5Se9] chains connected via [As3Se2]-Se pentagonal linkers and charge-balancing interstitial [Fe(en)3]2+ complexes (en = ethylenediamine). Neutron powder diffraction verified that interstitial water molecules participate in the crystal packing. Magnetic polarizability of the produced compound was confirmed by X-ray magnetic circular dichroism (XMCD) spectroscopy. X-ray absorption spectroscopy (XAS) and 57Fe Mössbauer spectroscopy showed the presence of mixed-valent Fe2+/Fe3+ in the Fe-Se chains. Magnetic susceptibility measurements reveal strong antiferromagnetic nearest neighbor interactions within the chains with no apparent magnetic ordering down to 2 K. Hidden short-range magnetic ordering below 70 K was found by 57Fe Mössbauer spectroscopy, showing that a fraction of the Fe3+/Fe2+ in the chains are magnetically ordered. Nevertheless, complete magnetic ordering is not achieved even at 6 K. Analysis of XAS spectra demonstrates that the fraction of Fe3+ in the chain increases with decreasing temperature. Computational analysis points out several competing ferrimagnetic ordered models within a single chain. This competition, together with variation in the Fe oxidation state and additional weak intrachain interactions, is hypothesized to prevent long-range magnetic ordering.

4.
Inorg Chem ; 61(16): 6160-6174, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35412816

ABSTRACT

A set of three Cr-dimer compounds, Cr2Q2(en)4X2 (Q: S, Se; X: Br, Cl; en: ethylenediamine), with monoatomic chalcogenide bridges have been synthesized via a single-step solvothermal route. Chalcogenide linkers mediate magnetic exchange between Cr3+ centers, while bidentate ethylenediamine ligands complete the distorted octahedral coordination of Cr centers. Unlike the compounds previously reported, none of the chalcogenide atoms are connected to extra ligands. Magnetic susceptibility studies indicate antiferromagnetic coupling between Cr3+ centers, which are moderate in Cr2Se2(en)4X2 and stronger in Cr2S2(en)4Cl2. Fitting the magnetic data requires a biquadratic exchange term. High-frequency EPR spectra showing characteristic signals due to coupled S = 1 spin states could be interpreted in terms of the "giant spin" Hamiltonian. A fourth compound, Cr2Se8(en)4, has a single diatomic Se bridge connecting the two Cr3+ centers and shows weak ferromagnetic exchange interactions. This work demonstrates the tunability in strength and type of exchange interactions between metal centers by manipulating the interatomic distances and number of bridging chalcogenide linkers.

5.
Chemistry ; 28(5): e202103761, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34757673

ABSTRACT

A novel transition metal chalcohalide [Cr7 S8 (en)8 Cl2 ]Cl3 ⋅ 2H2 O, with [Cr7 S8 ]5+ dicubane cationic clusters, has been synthesized by a low temperature solvothermal method, using dimethyl sulfoxide (DMSO) and ethylenediamine (en) solvents. Ethylenediamine ligand exhibits bi- and monodentate coordination modes; in the latter case ethylenediamine coordinates to Cr atoms of adjacent clusters, giving rise to a 2D polymeric structure. Although magnetic susceptibility shows no magnetic ordering down to 1.8 K, a highly negative Weiss constant, θ=-224(2) K, obtained from Curie-Weiss fit of inverse susceptibility, suggests strong antiferromagnetic (AFM) interactions between S=3/2 Cr(III) centers. Due to the complexity of the system with (2S+1)7 =16384 microstates from seven Cr3+ centers, a simplified model with only two exchange constants was used for simulations. Density-functional theory (DFT) calculations yielded the two exchange constants to be J1 =-21.4 cm-1 and J2 =-30.2 cm-1 , confirming competing AFM coupling between the shared Cr3+ center and the peripheral Cr3+ ions of the dicubane cluster. The best simulation of the experimental data was obtained with J1 =-20.0 cm-1 and J2 =-21.0 cm-1 , in agreement with the slightly stronger AFM exchange within the triangles of the peripheral Cr3+ ions as compared to the AFM exchange between the central and peripheral Cr3+ ions. This compound is proposed as a synthon towards magnetically frustrated systems assembled by linking dicubane transition metal-chalcogenide clusters into polymeric networks.

6.
Inorg Chem ; 59(18): 13353-13363, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32872773

ABSTRACT

A one-dimensional (1D) chain compound [Fe(en)3]3(FeSe2)4Cl2 (en = ethylenediamine), featuring tetrahedral FeSe2 chains separated by [Fe(en)3]2+ cations and Cl- anions, has been synthesized by a low temperature solvothermal method using simple starting materials. The degree of distortion in the Fe-Se backbone is similar to previously reported compounds with isolated 1D FeSe2 chains. 57Fe Mössbauer spectroscopy reveals the mixed-valent nature of [Fe(en)3]3(FeSe2)4Cl2 with Fe3+ centers in the [FeSe2]- chains and Fe2+ centers in the [Fe(en)3]2+ complexes. SQUID magnetometry indicates that [Fe(en)3]3(FeSe2)4Cl2 is paramagnetic with a reduced average effective magnetic moment, µeff = 9.51 µB per formula unit, and a negative Weiss constant, θ = -10.9(4) K, indicating antiferromagnetic (AFM) nearest neighbor interactions within the [FeSe2]- chains. Weak antiferromagnetic coupling between chains, combined with rather strong intrachain AFM coupling, leads to spin-glass behavior at low temperatures, as indicated by a frequency shift of the peak observed at 3 K in AC magnetic measurements. A combination of [Fe(en)3]2+ and Cl- ions is also capable of stabilizing mixed-valent 2D Fe-Se puckered layers in the crystal structure of [Fe(en)3]4(Fe14Se21)Cl2, where Fe14Se21 layers have a unique topology with large open pores. Property measurements of [Fe(en)3]4(Fe14Se21)Cl2 could not be performed due to the inability to either grow large crystals or synthesize this material in single-phase form.

SELECTION OF CITATIONS
SEARCH DETAIL
...