Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Gastrointest Liver Physiol ; 321(5): G461-G476, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34431405

ABSTRACT

Multiple theories have been proposed describing the pathogenic mechanisms of Helicobacter pylori (H. pylori)-associated gastric motility disorders. We assessed ex vivo pyloric activity in H. pylori-infected rats, and tried to explore the associated ghrelin hormone alteration and pyloric fibrogenesis. In addition, miR-1 was assessed in pyloric tissue samples, being recently accused of having a role in smooth muscle dysfunction. Ninety adult male Wistar albino rats were assigned into nine groups: 1) control group, 2) sterile broth (vehicle group), 3) amoxicillin control, 4) omeperazole control, 5) clarithromycin control, 6) triple therapy control, 7) H. pylori- group, 8) H. pylori-clarithromycin group, and 9) H. pylori-triple therapy group. Urease enzyme activity was applied as an indicator of H. pylori infection. Ex vivo pyloric contractility was evaluated. Serum ghrelin was assessed, and histological tissue evaluation was performed. Besides, pyloric muscle miR-1 expression was measured. The immunological epithelial to mesenchymal transition (EMT) markers; transforming growth factor ß (TGFß), α-smooth muscle actin (α-SMA), and E-cadherin-3 were also evaluated. By H. pylori infection, a significant (P < 0.001) reduced pyloric contractility index was recorded. The miR-1 expression was decreased (P < 0.001) in the H. pylori-infected group, associated with reduced serum ghrelin, elevated TGFß, and α-SMA levels and reduced E-cadherin levels. Decreased miR-1 and disturbed molecular pattern were improved by treatment. In conclusion, H. pylori infection was associated with reduced miR-1, epithelial to mesenchymal transition, and pyloric hypomotility. The miR-1 may be a target for further studies to assess its possible involvement in H. pylori-associated pyloric dysfunction, which might help in the management of human H. pylori manifestations and complications.NEW & NOTEWORTHY This work is investigating functional, histopathological, and molecular changes underlying Helicobacter pylori hypomotility and is correlating these with miR-1, whose disturbance is supposed to be involved in smooth muscle dysfunction and cell proliferation according to literature. Epithelial to mesenchymal transition and reduced ghrelin hormone may contribute to H. pylori infection-associated hypomotility. H. pylori infection was associated with reduced pyloric miR-1 expression. Targeting miR-1 could be valuable in the clinical management of pyloric hypofunction.


Subject(s)
Epithelial-Mesenchymal Transition , Gastrointestinal Motility , Helicobacter Infections/microbiology , Helicobacter pylori/pathogenicity , Muscle, Smooth/microbiology , Pylorus/microbiology , Stomach Diseases/microbiology , Actins/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Cadherins/metabolism , Disease Models, Animal , Drug Therapy, Combination , Epithelial-Mesenchymal Transition/drug effects , Gastrointestinal Motility/drug effects , Ghrelin/blood , Helicobacter Infections/drug therapy , Helicobacter Infections/metabolism , Helicobacter Infections/physiopathology , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Muscle, Smooth/physiopathology , Proton Pump Inhibitors/pharmacology , Pylorus/drug effects , Pylorus/metabolism , Pylorus/physiopathology , Rats, Wistar , Stomach Diseases/drug therapy , Stomach Diseases/metabolism , Stomach Diseases/physiopathology , Transforming Growth Factor beta/metabolism
2.
Diab Vasc Dis Res ; 13(6): 405-417, 2016 11.
Article in English | MEDLINE | ID: mdl-27488359

ABSTRACT

AIMS: To investigate the possible protective effect of elevated undercarboxylated osteocalcin on diabetic cardiomyopathy mechanisms and risk factors. METHODS: In all, 32 male rats were divided into four groups: control, diabetic, diabetic warfarin and normal warfarin-treated groups. Isolated heart functions were assessed; fasting serum insulin, glucose and glycosylated haemoglobin, homeostasis model assessment insulin resistance and lipid profile were investigated. Serum undercarboxylated osteocalcin and adiponectin were also measured. In cardiac tissue, malondialdehyde content, acyl-CoA dehydrogenase gene expression, Bax/Bcl2 ratio, sarcoendoplasmic reticulum calcium ATPase and osteocalcin receptor (G protein-coupled receptor family C group 6 member A) genes expression were investigated. RESULTS: Prophylactic elevation of undercarboxylated osteocalcin was accompanied by improved insulin sensitivity and lipid profile, increased serum adiponectin, upregulated myocardial osteocalcin receptor with preserved left ventricular function, decreased cardiac malondialdehyde content, acyl-CoA dehydrogenase and Bax/Bcl2 ratio. CONCLUSION: Undercarboxylated osteocalcin was suggested to have protective effects against diabetic cardiomyopathy, possibly through direct action on upregulated G protein-coupled receptor family C group 6 member A and indirectly via adiponectin. These effects may be mediated through antagonizing oxidative stress and apoptosis.


Subject(s)
Carbon-Carbon Ligases/antagonists & inhibitors , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetic Cardiomyopathies/prevention & control , Enzyme Inhibitors/pharmacology , Myocardium/enzymology , Osteocalcin/blood , Warfarin/pharmacology , Adiponectin/metabolism , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Carbon-Carbon Ligases/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/enzymology , Diabetic Cardiomyopathies/blood , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/etiology , Insulin/blood , Insulin Resistance , Lipids/blood , Male , Malondialdehyde/metabolism , Myocardium/pathology , Oxidative Stress/drug effects , Rats , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects
3.
J Integr Neurosci ; 13(4): 669-92, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25391717

ABSTRACT

Stress is any condition that seriously affects the balance of the organism physiologically and psychologically. Stress activates the hypothalamic-pituitary-adrenal (HPA) releasing glucocorticoid hormones that produce generalized effects on different body systems including the nervous system. This study aimed to investigate the effect of acute restraint stress (ARS) on cognitive performance by measuring spatial working memory in Y-maze, behavior (anxiety and exploratory behavior) in open field test, expression of synaptophysin and glial fibrillary acidic protein (GFAP) in the hippocampus by immunohistochemistry, dopaminergic receptors (D2) in the basal ganglia by gene expression and comparing the effect of ghrelin and quetiapine on the previous parameters. 36 adult male albino rats constituted the animal model of this work and have been divided into six groups: control group, control group exposed to ARS, quetiapine group, quetiapine group exposed to ARS, ghrelin group and ghrelin group exposed to ARS. We demonstrated more neuroprotective effect for quetiapine compared to ghrelin on stress response, anxiety behavior and working spatial memory impairment due to ARS.


Subject(s)
Antipsychotic Agents/administration & dosage , Cognition Disorders/etiology , Cognition Disorders/prevention & control , Dibenzothiazepines/administration & dosage , Ghrelin/administration & dosage , Stress, Psychological/complications , Analysis of Variance , Animals , Cognition Disorders/blood , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Exploratory Behavior/drug effects , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/metabolism , Hydrocortisone/blood , Male , Maze Learning/drug effects , Quetiapine Fumarate , Rats , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Stress, Psychological/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...