Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 57(2): 303-318.e6, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38309273

ABSTRACT

Production of amphiregulin (Areg) by regulatory T (Treg) cells promotes repair after acute tissue injury. Here, we examined the function of Treg cells in non-alcoholic steatohepatitis (NASH), a setting of chronic liver injury. Areg-producing Treg cells were enriched in the livers of mice and humans with NASH. Deletion of Areg in Treg cells, but not in myeloid cells, reduced NASH-induced liver fibrosis. Chronic liver damage induced transcriptional changes associated with Treg cell activation. Mechanistically, Treg cell-derived Areg activated pro-fibrotic transcriptional programs in hepatic stellate cells via epidermal growth factor receptor (EGFR) signaling. Deletion of Areg in Treg cells protected mice from NASH-dependent glucose intolerance, which also was dependent on EGFR signaling on hepatic stellate cells. Areg from Treg cells promoted hepatocyte gluconeogenesis through hepatocyte detection of hepatic stellate cell-derived interleukin-6. Our findings reveal a maladaptive role for Treg cell-mediated tissue repair functions in chronic liver disease and link liver damage to NASH-dependent glucose intolerance.


Subject(s)
Glucose Intolerance , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Amphiregulin/genetics , Amphiregulin/metabolism , ErbB Receptors/metabolism , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Liver/metabolism , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , T-Lymphocytes, Regulatory/metabolism
3.
FASEB J ; 36(8): e22441, 2022 08.
Article in English | MEDLINE | ID: mdl-35816155

ABSTRACT

Vesicle-mediated transport is necessary for maintaining cellular homeostasis and proper signaling. The synaptosome-associated protein 23 (SNAP23) is a member of the SNARE protein family and mediates the vesicle docking and membrane fusion steps of secretion during exocytosis. Skeletal muscle has been established as a secretory organ; however, the role of SNAP23 in the context of skeletal muscle development is still unknown. Here, we show that depletion of SNAP23 in C2C12 mouse myoblasts reduces their ability to differentiate into myotubes as a result of premature cell cycle exit and early activation of the myogenic transcriptional program. This effect is rescued when cells are seeded at a high density or when cultured in conditioned medium from wild type cells. Proteomic analysis of collected medium indicates that SNAP23 depletion leads to a misregulation of exocytosis, including decreased secretion of the insulin-like growth factor 1 (IGF1), a critical protein for muscle growth, development, and function. We further demonstrate that treatment of SNAP23-depleted cells with exogenous IGF1 rescues their myogenic capacity. We propose that SNAP23 mediates the secretion of specific proteins, such as IGF1, that are important for achieving proper differentiation of skeletal muscle cells during myogenesis. This work highlights the underappreciated role of skeletal muscle as a secretory organ and contributes to the understanding of factors necessary for myogenesis.


Subject(s)
Proteomics , Synaptosomes , Animals , Cell Differentiation , Mice , Muscle Development , Myoblasts/metabolism , Qb-SNARE Proteins/genetics , Qc-SNARE Proteins/genetics , SNARE Proteins/metabolism , Synaptosomes/metabolism
4.
J Biol Chem ; 295(35): 12545-12558, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32690612

ABSTRACT

Bile acids (BAs) comprise heterogenous amphipathic cholesterol-derived molecules that carry out physicochemical and signaling functions. A major site of BA action is the terminal ileum, where enterocytes actively reuptake BAs and express high levels of BA-sensitive nuclear receptors. BA pool size and composition are affected by changes in metabolic health, and vice versa. One of several factors that differentiate BAs is the presence of a hydroxyl group on C12 of the steroid ring. 12α-Hydroxylated BAs (12HBAs) are altered in multiple disease settings, but the consequences of 12HBA abundance are incompletely understood. We employed mouse primary ileum organoids to investigate the transcriptional effects of varying 12HBA abundance in BA pools. We identified Slc30a10 as one of the top genes differentially induced by BA pools with varying 12HBA abundance. SLC30A10 is a manganese efflux transporter critical for whole-body manganese excretion. We found that BA pools, especially those low in 12HBAs, induce cellular manganese efflux and that Slc30a10 induction by BA pools is driven primarily by lithocholic acid signaling via the vitamin D receptor. Administration of lithocholic acid or a vitamin D receptor agonist resulted in increased Slc30a10 expression in mouse ileum epithelia. These data demonstrate a previously unknown role for BAs in intestinal control of manganese homeostasis.


Subject(s)
Cation Transport Proteins/metabolism , Ileum/metabolism , Intestinal Mucosa/metabolism , Lithocholic Acid/pharmacology , Manganese/metabolism , Animals , Ion Transport/drug effects , Lithocholic Acid/metabolism , Mice , Organoids/metabolism , Receptors, Calcitriol/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL