Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 82(11): 2098-2112.e4, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35597239

ABSTRACT

The critical role of the INO80 chromatin remodeling complex in transcription is commonly attributed to its nucleosome sliding activity. Here, we have found that INO80 prefers to mobilize hexasomes over nucleosomes. INO80's preference for hexasomes reaches up to ∼60 fold when flanking DNA overhangs approach ∼18-bp linkers in yeast gene bodies. Correspondingly, deletion of INO80 significantly affects the positions of hexasome-sized particles within yeast genes in vivo. Our results raise the possibility that INO80 promotes nucleosome sliding by dislodging an H2A-H2B dimer, thereby making a nucleosome transiently resemble a hexasome. We propose that this mechanism allows INO80 to rapidly mobilize nucleosomes at promoters and hexasomes within gene bodies. Rapid repositioning of hexasomes that are generated in the wake of transcription may mitigate spurious transcription. More generally, such versatility may explain how INO80 regulates chromatin architecture during the diverse processes of transcription, replication, and repair.


Subject(s)
Nucleosomes , Saccharomyces cerevisiae Proteins , Chromatin/genetics , Chromatin Assembly and Disassembly , Histones/metabolism , Nucleosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
3.
J Mol Biol ; 433(14): 166876, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33556407

ABSTRACT

Packaging of the eukaryotic genome into chromatin places fundamental physical constraints on transcription. Clarifying how transcription operates within these constraints is essential to understand how eukaryotic gene expression programs are established and maintained. Here we review what is known about the mechanisms of transcription on chromatin templates. Current models indicate that transcription through chromatin is accomplished by the combination of an inherent nucleosome disrupting activity of RNA polymerase and the action of ATP-dependent chromatin remodeling motors. Collaboration between these two types of molecular motors is proposed to occur at all stages of transcription through diverse mechanisms. Further investigation of how these two motors combine their basic activities is essential to clarify the interdependent relationship between genome structure and transcription.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/genetics , Chromatin/metabolism , Adenosine Triphosphatases/metabolism , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation , Nucleosomes/metabolism , Transcription, Genetic
4.
Nature ; 579(7797): 136-140, 2020 03.
Article in English | MEDLINE | ID: mdl-32076268

ABSTRACT

Metazoan development requires the robust proliferation of progenitor cells, the identities of which are established by tightly controlled transcriptional networks1. As gene expression is globally inhibited during mitosis, the transcriptional programs that define cell identity must be restarted in each cell cycle2-5 but how this is accomplished is poorly understood. Here we identify a ubiquitin-dependent mechanism that integrates gene expression with cell division to preserve cell identity. We found that WDR5 and TBP, which bind active interphase promoters6,7, recruit the anaphase-promoting complex (APC/C) to specific transcription start sites during mitosis. This allows APC/C to decorate histones with ubiquitin chains branched at Lys11 and Lys48 (K11/K48-branched ubiquitin chains) that recruit p97 (also known as VCP) and the proteasome, which ensures the rapid expression of pluripotency genes in the next cell cycle. Mitotic exit and the re-initiation of transcription are thus controlled by a single regulator (APC/C), which provides a robust mechanism for maintaining cell identity throughout cell division.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Differentiation/genetics , Gene Expression Regulation , Multiprotein Complexes/metabolism , Anaphase , Cell Division , HEK293 Cells , HeLa Cells , Histones/chemistry , Histones/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Interphase , Intracellular Signaling Peptides and Proteins/metabolism , Mitosis , Organophosphates/metabolism , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Transcription Initiation Site , Ubiquitin/metabolism , Ubiquitination
5.
Cell ; 179(2): 470-484.e21, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31543265

ABSTRACT

Eukaryotic chromatin is highly condensed but dynamically accessible to regulation and organized into subdomains. We demonstrate that reconstituted chromatin undergoes histone tail-driven liquid-liquid phase separation (LLPS) in physiologic salt and when microinjected into cell nuclei, producing dense and dynamic droplets. Linker histone H1 and internucleosome linker lengths shared across eukaryotes promote phase separation of chromatin, tune droplet properties, and coordinate to form condensates of consistent density in manners that parallel chromatin behavior in cells. Histone acetylation by p300 antagonizes chromatin phase separation, dissolving droplets in vitro and decreasing droplet formation in nuclei. In the presence of multi-bromodomain proteins, such as BRD4, highly acetylated chromatin forms a new phase-separated state with droplets of distinct physical properties, which can be immiscible with unmodified chromatin droplets, mimicking nuclear chromatin subdomains. Our data suggest a framework, based on intrinsic phase separation of the chromatin polymer, for understanding the organization and regulation of eukaryotic genomes.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , Chromatin/metabolism , E1A-Associated p300 Protein/metabolism , Histones/metabolism , Transcription Factors/metabolism , Acetylation , Animals , Escherichia coli/genetics , HeLa Cells , Humans , Nuclear Proteins/metabolism , Sf9 Cells
6.
Elife ; 82019 06 18.
Article in English | MEDLINE | ID: mdl-31210637

ABSTRACT

The SNF2h remodeler slides nucleosomes most efficiently as a dimer, yet how the two protomers avoid a tug-of-war is unclear. Furthermore, SNF2h couples histone octamer deformation to nucleosome sliding, but the underlying structural basis remains unknown. Here we present cryo-EM structures of SNF2h-nucleosome complexes with ADP-BeFx that capture two potential reaction intermediates. In one structure, histone residues near the dyad and in the H2A-H2B acidic patch, distal to the active SNF2h protomer, appear disordered. The disordered acidic patch is expected to inhibit the second SNF2h protomer, while disorder near the dyad is expected to promote DNA translocation. The other structure doesn't show octamer deformation, but surprisingly shows a 2 bp translocation. FRET studies indicate that ADP-BeFx predisposes SNF2h-nucleosome complexes for an elemental translocation step. We propose a model for allosteric control through the nucleosome, where one SNF2h protomer promotes asymmetric octamer deformation to inhibit the second protomer, while stimulating directional DNA translocation.


Subject(s)
Adenosine Triphosphatases/ultrastructure , Chromosomal Proteins, Non-Histone/ultrastructure , Nucleosomes/ultrastructure , Adenosine Triphosphatases/metabolism , Allosteric Regulation , Chromosomal Proteins, Non-Histone/metabolism , Cryoelectron Microscopy , Histones/ultrastructure , Humans , Protein Conformation , Protein Multimerization
7.
Elife ; 72018 04 17.
Article in English | MEDLINE | ID: mdl-29664398

ABSTRACT

ISWI family chromatin remodeling motors use sophisticated autoinhibition mechanisms to control nucleosome sliding. Yet how the different autoinhibitory domains are regulated is not well understood. Here we show that an acidic patch formed by histones H2A and H2B of the nucleosome relieves the autoinhibition imposed by the AutoN and the NegC regions of the human ISWI remodeler SNF2h. Further, by single molecule FRET we show that the acidic patch helps control the distance travelled per translocation event. We propose a model in which the acidic patch activates SNF2h by providing a landing pad for the NegC and AutoN auto-inhibitory domains. Interestingly, the INO80 complex is also strongly dependent on the acidic patch for nucleosome sliding, indicating that this substrate feature can regulate remodeling enzymes with substantially different mechanisms. We therefore hypothesize that regulating access to the acidic patch of the nucleosome plays a key role in coordinating the activities of different remodelers in the cell.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Histones/metabolism , Nucleosomes/metabolism , Fluorescence Resonance Energy Transfer , Humans , Single Molecule Imaging
8.
Angew Chem Int Ed Engl ; 55(42): 13005-13009, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27653519

ABSTRACT

In fungal non-reducing polyketide synthases (NR-PKS) the acyl-carrier protein (ACP) carries the growing polyketide intermediate through iterative rounds of elongation, cyclization and product release. This process occurs through a controlled, yet enigmatic coordination of the ACP with its partner enzymes. The transient nature of ACP interactions with these catalytic domains imposes a major obstacle for investigation of the influence of protein-protein interactions on polyketide product outcome. To further our understanding about how the ACP interacts with the product template (PT) domain that catalyzes polyketide cyclization, we developed the first mechanism-based crosslinkers for NR-PKSs. Through in vitro assays, in silico docking and bioinformatics, ACP residues involved in ACP-PT recognition were identified. We used this information to improve ACP compatibility with non-cognate PT domains, which resulted in the first gain-of-function ACP with improved interactions with its partner enzymes. This advance will aid in future combinatorial biosynthesis of new polyketides.


Subject(s)
Acyl Carrier Protein/chemistry , Polyketides/chemistry , Acyl Carrier Protein/metabolism , Molecular Conformation , Molecular Docking Simulation , Polyketides/metabolism , Protein Binding , Protein Conformation
9.
Annu Rev Biophys ; 45: 153-81, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27391925

ABSTRACT

Chromatin remodeling motors play essential roles in all DNA-based processes. These motors catalyze diverse outcomes ranging from sliding the smallest units of chromatin, known as nucleosomes, to completely disassembling chromatin. The broad range of actions carried out by these motors on the complex template presented by chromatin raises many stimulating mechanistic questions. Other well-studied nucleic acid motors provide examples of the depth of mechanistic understanding that is achievable from detailed biophysical studies. We use these studies as a guiding framework to discuss the current state of knowledge of chromatin remodeling mechanisms and highlight exciting open questions that would continue to benefit from biophysical analyses.


Subject(s)
Adenosine Triphosphate/metabolism , Chromatin Assembly and Disassembly , Molecular Motor Proteins/metabolism , Adenosine Triphosphatases/metabolism , Animals , Chromatin/physiology , DNA/metabolism , Humans , Hydrolysis , Nucleosomes/physiology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...