Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(10): 113230, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37815917

ABSTRACT

T cell receptor (TCR) Vγ4-expressing γδ T cells comprise interferon γ (IFNγ)- and interleukin-17 (IL-17)-producing effector subsets, with a preference for IL-17 effector fate decisions during early ontogeny. The existence of adult-thymus-derived IL-17+ T cells (γδ17) remains controversial. Here, we use a mouse model in which T cells are generated exclusively in the adult thymus and employ single-cell chromatin state analysis to study their development. We identify adult-thymus-derived Vγ4 T cells that have all the molecular programs to become IL-17 producers. However, they have reduced IL-17 production capabilities and rarely reach the periphery. Moreover, this study provides high-resolution profiles of Vγ4 T cells in the adult thymus and lymph nodes and identifies Zeb1 as a potential γδ17 cell regulator. Together, this study provides valuable insights into the developmental traits of Vγ4 T cells during adulthood and supports the idea of age-specific signals required for thymic export and/or peripheral maturation of γδ17 cells.


Subject(s)
Interleukin-17 , Receptors, Antigen, T-Cell, gamma-delta , Mice , Animals , Nuclear Receptor Subfamily 1, Group F, Member 3 , Mice, Inbred C57BL , T-Lymphocytes , Thymus Gland , T-Lymphocyte Subsets , Proto-Oncogene Proteins c-maf
2.
Cell Rep Methods ; 3(10): 100598, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37776856

ABSTRACT

Spatially resolved omics technologies reveal context-dependent cellular regulatory networks in tissues of interest. Beyond transcriptome analysis, information on epigenetic traits and chromatin accessibility can provide further insights on gene regulation in health and disease. Nevertheless, compared to the enormous advancements in spatial transcriptomics technologies, the field of spatial epigenomics is much younger and still underexplored. In this study, we report laser capture microdissection coupled to ATAC-seq (LCM-ATAC-seq) applied to fresh frozen samples for the spatial characterization of chromatin accessibility. We first demonstrate the efficient use of LCM coupled to in situ tagmentation and evaluate its performance as a function of cell number, microdissected areas, and tissue type. Further, we demonstrate its use for the targeted chromatin accessibility analysis of discrete contiguous or scattered cell populations in tissues via single-nuclei capture based on immunostaining for specific cellular markers.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Chromatin , Chromatin/genetics , Laser Capture Microdissection , Gene Expression Profiling , Freezing
SELECTION OF CITATIONS
SEARCH DETAIL