Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37176074

ABSTRACT

Bidirectional dialogue between cellular and non-cellular components of the tumor microenvironment (TME) drives cancer survival. In the extracellular space, combinations of matrix molecules and soluble mediators provide external cues that dictate the behavior of TME resident cells. Often studied in isolation, integrated cues from complex tissue microenvironments likely function more cohesively. Here, we study the interplay between the matrix molecule tenascin-C (TNC) and chemokine CCL2, both elevated in and associated with the progression of breast cancer and playing key roles in myeloid immune responses. We uncover a correlation between TNC/CCL2 tissue levels in HER2+ breast cancer and examine the physical and functional interactions of these molecules in a murine disease model with tunable TNC levels and in in vitro cellular and cell-free models. TNC supported sustained CCL2 synthesis, with chemokine binding to TNC via two distinct domains. TNC dominated the behavior of tumor-resident myeloid cells; CCL2 did not impact macrophage survival/activation whilst TNC facilitated an immune suppressive macrophage phenotype that was not dependent on or altered by CCL2 co-expression. Together, these data map new binding partners within the TME and demonstrate that whilst the matrix exerts transcriptional control over the chemokine, each plays a distinct role in subverting anti-tumoral immunity.


Subject(s)
Neoplasms , Tenascin , Animals , Mice , Chemokines/metabolism , Extracellular Matrix/metabolism , Macrophages/metabolism , Neoplasms/metabolism , Signal Transduction , Tenascin/metabolism , Chemokine CCL2/metabolism
3.
Nat Genet ; 53(4): 500-510, 2021 04.
Article in English | MEDLINE | ID: mdl-33782605

ABSTRACT

Spleen tyrosine kinase (SYK) is a critical immune signaling molecule and therapeutic target. We identified damaging monoallelic SYK variants in six patients with immune deficiency, multi-organ inflammatory disease such as colitis, arthritis and dermatitis, and diffuse large B cell lymphomas. The SYK variants increased phosphorylation and enhanced downstream signaling, indicating gain of function. A knock-in (SYK-Ser544Tyr) mouse model of a patient variant (p.Ser550Tyr) recapitulated aspects of the human disease that could be partially treated with a SYK inhibitor or transplantation of bone marrow from wild-type mice. Our studies demonstrate that SYK gain-of-function variants result in a potentially treatable form of inflammatory disease.


Subject(s)
Arthritis/genetics , Colitis/genetics , Dermatitis/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Syk Kinase/genetics , Adult , Animals , Arthritis/immunology , Arthritis/pathology , Arthritis/therapy , Base Sequence , Bone Marrow Transplantation , Colitis/immunology , Colitis/pathology , Colitis/therapy , Dermatitis/immunology , Dermatitis/pathology , Dermatitis/therapy , Family , Female , Gene Expression , Gene Knock-In Techniques , Humans , Infant , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/therapy , Male , Mice , Mice, Knockout , Middle Aged , Mutation , Pedigree , Protein Kinase Inhibitors/pharmacology , Syk Kinase/antagonists & inhibitors , Syk Kinase/deficiency
4.
Cancer Immunol Res ; 8(3): 368-382, 2020 03.
Article in English | MEDLINE | ID: mdl-31941671

ABSTRACT

The interplay between cancer cells and immune cells is a key determinant of tumor survival. Here, we uncovered how tumors exploit the immunomodulatory properties of the extracellular matrix to create a microenvironment that enables their escape from immune surveillance. Using orthotopic grafting of mammary tumor cells in immunocompetent mice and autochthonous models of breast cancer, we discovered how tenascin-C, a matrix molecule absent from most healthy adult tissues but expressed at high levels and associated with poor patient prognosis in many solid cancers, controls the immune status of the tumor microenvironment. We found that, although host-derived tenascin-C promoted immunity via recruitment of proinflammatory, antitumoral macrophages, tumor-derived tenascin-C subverted host defense by polarizing tumor-associated macrophages toward a pathogenic, immune-suppressive phenotype. Therapeutic monoclonal antibodies that blocked tenascin-C activation of Toll-like receptor 4 reversed this phenotypic switch in vitro and reduced tumor growth and lung metastasis in vivo, providing enhanced benefit in combination with anti-PD-L1 over either treatment alone. Combined tenascin-C:macrophage gene-expression signatures delineated a significant survival benefit in people with breast cancer. These data revealed a new approach to targeting tumor-specific macrophage polarization that may be effective in controlling the growth and spread of breast tumors.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Macrophages/immunology , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Extracellular Matrix/drug effects , Extracellular Matrix/immunology , Female , Humans , Immunologic Surveillance , Immunotherapy/methods , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophages/drug effects , Mice , Phenotype , Tenascin/immunology , Tumor Cells, Cultured , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL