Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Med Genet B Neuropsychiatr Genet ; 168(8): 720-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26365303

ABSTRACT

Oxytocin regulates social behavior in animal models. Research supports an association between genetic variation in the oxytocin receptor gene (OXTR) and autism spectrum disorders (ASD). In this study, we examine the association between the OXTR gene and a specific social phenotype within ASD. This genotype-phenotype investigation may provide insight into how OXTR conveys risk for social impairment. The current study investigated 10 SNPS in the OXTR gene that have been previously shown to be associated with ASD. We examine the association of these SNPs with both a social phenotype and a repetitive behavior phenotype comprised of behaviors commonly impaired in ASD in the Simons simplex collection (SSC). Using a large sample to examine the association between OXTR and ASD (n = range: 485-1002), we find evidence to support a relation between two OXTR SNPs and the examined social phenotype among children diagnosed with ASD. Greater impairment on the social responsiveness scale standardized total score and on several subdomains was observed among individuals with one or more copies of the minor frequency allele in both rs7632287 and rs237884. Linkage disequilibrium (LD) mapping suggests that these two SNPs are in LD within and overlapping the 3' untranslated region (3'-UTR) of the OXTR gene. These two SNPs were also associated with greater impairment on the repetitive behavior scale. Results of this study indicate that social impairment and repetitive behaviors in ASD are associated with genomic variation in the 3'UTR of the OXTR gene. These variants may be linked to an allele that alters stability of the mRNA message although further work is necessary to test this hypothesis.


Subject(s)
Autism Spectrum Disorder/genetics , Receptors, Oxytocin/genetics , Autism Spectrum Disorder/psychology , Child , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Humans , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide , Social Behavior , Stereotyped Behavior
2.
Neurotherapeutics ; 12(3): 553-71, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26105128

ABSTRACT

Autism spectrum disorder (ASD) is a group of highly genetic neurodevelopmental disorders characterized by language, social, cognitive, and behavioral abnormalities. ASD is a complex disorder with a heterogeneous etiology. The genetic architecture of autism is such that a variety of different rare mutations have been discovered, including rare monogenic conditions that involve autistic symptoms. Also, de novo copy number variants and single nucleotide variants contribute to disease susceptibility. Finally, autosomal recessive loci are contributing to our understanding of inherited factors. We will review the progress that the field has made in the discovery of these rare genetic variants in autism. We argue that mutation discovery of this sort offers an important opportunity to identify neurodevelopmental mechanisms in disease. The hope is that these mechanisms will show some degree of convergence that may be amenable to treatment intervention.


Subject(s)
Autism Spectrum Disorder/genetics , Mutation , Neurodevelopmental Disorders/genetics , Autism Spectrum Disorder/physiopathology , Brain/metabolism , Brain/physiopathology , Genetic Predisposition to Disease , Humans , Neurodevelopmental Disorders/physiopathology
4.
Am J Hum Genet ; 93(1): 103-9, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23830515

ABSTRACT

Intellectual disability (ID), often attributed to autosomal-recessive mutations, occurs in 40% of autism spectrum disorders (ASDs). For this reason, we conducted a genome-wide analysis of runs of homozygosity (ROH) in simplex ASD-affected families consisting of a proband diagnosed with ASD and at least one unaffected sibling. In these families, probands with an IQ ≤ 70 show more ROH than their unaffected siblings, whereas probands with an IQ > 70 do not show this excess. Although ASD is far more common in males than in females, the proportion of females increases with decreasing IQ. Our data do support an association between ROH burden and autism diagnosis in girls; however, we are not able to show that this effect is independent of low IQ. We have also discovered several autism candidate genes on the basis of finding (1) a single gene that is within an ROH interval and that is recurrent in autism or (2) a gene that is within an autism ROH block and that harbors a homozygous, rare deleterious variant upon analysis of exome-sequencing data. In summary, our data suggest a distinct genetic architecture for participants with autism and co-occurring intellectual disability and that this architecture could involve a role for recessively inherited loci for this autism subgroup.


Subject(s)
Child Development Disorders, Pervasive/genetics , Genetic Association Studies/methods , Intellectual Disability/genetics , Child , Chromosomes, Human/genetics , Female , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease/genetics , Genetics, Population/methods , Homozygote , Humans , Intelligence Tests , Male , Pedigree , Phenotype , Sex Factors
5.
J Am Acad Child Adolesc Psychiatry ; 52(4): 414-430.e14, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23582872

ABSTRACT

OBJECTIVE: The purpose of the present study was to discover the extent to which distinct DSM disorders share large, highly recurrent copy number variants (CNVs) as susceptibility factors. We also sought to identify gene mechanisms common to groups of diagnoses and/or specific to a given diagnosis based on associations with CNVs. METHOD: Systematic review of 820 PubMed articles on autism spectrum disorder (ASD), intellectual disability (ID), schizophrenia, and epilepsy produced 54 CNVs associated with one or several disorders. Pathway analysis on genes implicated by CNVs in different groupings was conducted. RESULTS: The majority of CNVs were found in ID with the other disorders somewhat subsumed, yet certain CNVs were associated with isolated or groups of disorders. Based on genes implicated by CNVs, ID encompassed 96.8% of genes in ASD, 92.8% of genes in schizophrenia, and 100.0% of genes in epilepsy. Pathway analysis revealed that synapse processes were enriched in ASD, ID, and schizophrenia. Disease-specific processes were identified in ID (actin cytoskeleton processes), schizophrenia (ubiquitin-related processes), and ASD (synaptic vesicle transport and exocytosis). CONCLUSIONS: Intellectual disability may arise from the broadest range of genetic pathways, and specific subsets of these pathways appear to be relevant to other disorders or combinations of these disorders. It is clear that statistically significant CNVs across disorders of cognitive development are highly enriched for biological processes related to the synapse. There are also disorder-specific processes that may aid in understanding the distinct presentations and pathophysiology of these disorders.


Subject(s)
DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Intellectual Disability/genetics , Mental Disorders/genetics , Humans
6.
Biotechnol Bioeng ; 110(9): 2536-47, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23592239

ABSTRACT

Significant effort and resource expenditure is dedicated to enabling low-solubility oral drug delivery using solubilization technologies. Cyclodextrins (CD) are cyclic oligosaccharides which form inclusion complexes with many drugs and are often used as solubilizing agents. It is not clear prior to developing a drug delivery device with CD what level of absorption enhancement might be achieved; modeling can provide useful guidance in formulation and minimize resource intensive iterative formulation development. A model was developed to enable quantitative, dynamic prediction of the influence of CD on oral absorption of low solubility drug administered as a pre-formed complex. The predominant effects of CD considered were enhancement of dissolution and slowing of precipitation kinetics, as well as binding of free drug in solution. Simulation results with different parameter values reflective of typical drug and CD properties indicate a potential positive (up to five times increase in drug absorption), negative (up to 50% decrease in absorption) or lack of effect of CD. Comparison of model predictions with in vitro and in vivo experimental results indicate that a systems-based dynamic model incorporating CD complexation and key process kinetics may enable quantitative prediction of impact of CD delivered as a pre-formed complex on drug bioavailability.


Subject(s)
Chemistry, Pharmaceutical , Cyclodextrins/pharmacology , Drug Carriers/pharmacology , Intestinal Absorption/drug effects , Administration, Oral , Biological Availability , Caco-2 Cells , Cyclodextrins/administration & dosage , Cyclodextrins/chemistry , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Humans , Models, Biological , Solubility
7.
Genomics ; 99(1): 44-51, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22032952

ABSTRACT

Genome-wide characterization of the retinal transcriptome is central to understanding development, physiology and disorders of the visual system. Massively parallel, short-read sequencing of mRNA libraries was used to generate an extensive map of the transcriptome of the adult, murine neural retina. RNA-seq data strongly corroborates prior transcriptome studies by microarray and SAGE. However, several novel features of the retinal transcriptome were discovered. For example, retinal disease genes were discovered to be among the most highly expressed in the transcriptome. We also demonstrate other interesting features of the retinal transcriptome, for example, that the retina appears to employ a very specific and restricted set of synaptic vesicle genes, and also that there is persistence of expression of a majority of "neurodevelopmental" genes into adulthood. Retina transcriptome studies utilizing novel sequencing methods have been highly informative and these data may also serve as a resource for the community of researchers.


Subject(s)
Gene Expression Profiling/methods , Genome , Retina/physiology , Sequence Analysis, RNA/methods , Alternative Splicing , Animals , Gene Expression , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred Strains , Retina/cytology , Retinal Diseases/genetics , Retinal Neurons/physiology , Synaptic Vesicles/genetics
SELECTION OF CITATIONS
SEARCH DETAIL