Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
1.
Article in English | MEDLINE | ID: mdl-38877847

ABSTRACT

BACKGROUND: Serum allergen-specific IgE (sIgE) detection is an important tool in the diagnosis of allergic diseases. However, the absence of international standards for sIgE detection systems raises questions about the comparability of different systems. OBJECTIVE: This study aims to evaluate three common allergen sIgE detection systems, with a primary focus on detecting dust mite allergens. METHODS: We recruited 85 children with rhinitis and 15 healthy control children. The subjects underwent testing with three different sIgE detection systems, including magnetic particle flow fluorescence, magnetic particle chemiluminescence, and protein chip, to detect sIgE levels to HDM extracts. In addition, skin prick testing (SPT) was conducted, and protein chip technology was performed to measure sIgE levels to component proteins. RESULTS: Our findings reveal strong consistency between SPT and the three in vitro detection systems, with consistency exceeding 71.76% for dust mite allergens. Moreover, there was excellent consistency and RAST class consistency among the three in vitro detection systems, with scores exceeding 94.12% and 89.00%, respectively. And for the 13 additional allergens crude extracts sIgE simultaneously detected by systems 1 and 2, the results showed that the consistency of both systems was above 87.00%, and the RAST class consistency was above 82.00%. CONCLUSION: The three serum sIgE detection systems exhibited an approximate 80% concordance rate with SPT in identifying dust mite allergens. Furthermore, these systems demonstrated excellent consistency and RAST class consistency among themselves. These findings suggest that the three assays introduced in this study are interchangeable in allergen diagnosis.

2.
World J Clin Cases ; 12(17): 3019-3026, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38898828

ABSTRACT

BACKGROUND: Chronic eczema significantly impacts daily life, social interactions, and quality of life; however, no curative treatment has been identified. AIM: To determine the clinical efficacy of acupoint injection for chronic eczema and its influence on peripheral blood T cells. METHODS: Eighty patients with chronic eczema treated at our hospital between June 2022 and March 2023 were randomly assigned to a control group (n = 40), which received conventional Western medicine treatment, or an observation group (n = 40), which received routine Western medicine treatment plus acupoint injection of triamcinolone acetonide. Response and adverse reaction rates, as well as differences in the levels of serum cytokines IFN-γ, IL-2, IL-4, and IL-10 before and after treatment were investigated. RESULTS: No difference in overall response rates were found between the observation and control groups (100% vs 90%, respectively; P > 0.05); however, the observation group had a higher marked response rate than the control group (87.5% vs 52.5%; P < 0.05). Both groups had decreased Eczema Area and Severity Index scores and increased pruritus after treatment (P < 0.05), particularly in the observation group (P < 0.05). The observation group had an adverse reaction rate of 2.5% (1/40), which did not differ significantly from that of the control group (P > 0.05). The observation group exhibited higher post-treatment INF-γ and IL-2 but lower IL-4 levels than the control group (P < 0.05); however, no significant inter-group difference was observed in post-treatment IL-10 levels (P > 0.05). CONCLUSION: Acupoint injection of triamcinolone acetonide is safe and effective in treating chronic eczema. Its therapeutic mechanism is related to the regulation of peripheral blood T cell levels, inhibition of inflammatory reactions, and mitigation of immune imbalance.

3.
Biopharm Drug Dispos ; 45(3): 149-158, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38886878

ABSTRACT

Icaritin is a prenylflavonoid derivative of the genus Epimedium (Berberidaceae) and has a variety of pharmacological actions. Icaritin is approved by the National Medical Products Administration as an anticancer drug that exhibits efficacy and safety advantages in patients with hepatocellular carcinoma cells. This study aimed to evaluate the inhibitory effects of icaritin on UDP-glucuronosyltransferase (UGT) isoforms. 4-Methylumbelliferone (4-MU) was employed as a probe drug for all the tested UGT isoforms using in vitro human liver microsomes (HLM). The inhibition potentials of UGT1A1 and 1A9 in HLM were further tested by employing 17ß-estradiol (E2) and propofol (PRO) as probe substrates, respectively. The results showed that icaritin inhibits UGT1A1, 1A3, 1A4, 1A7, 1A8, 1A10, 2B7, and 2B15. Furthermore, icaritin exhibited a mixed inhibition of UGT1A1, 1A3, and 1A9, and the inhibition kinetic parameters (Ki) were calculated to be 3.538, 2.117, and 0.306 (µM), respectively. The inhibition of human liver microsomal UGT1A1 and 1A9 both followed mixed mechanism, with Ki values of 2.694 and 1.431 (µM). This study provides supporting information for understanding the drug-drug interaction (DDI) potential of the flavonoid icaritin and other UGT-metabolized drugs in clinical settings. In addition, the findings provide safety evidence for DDI when liver cancer patients receive a combination therapy including icaritin.


Subject(s)
Drug Interactions , Flavonoids , Glucuronosyltransferase , Microsomes, Liver , Glucuronosyltransferase/antagonists & inhibitors , Glucuronosyltransferase/metabolism , Humans , Flavonoids/pharmacology , Microsomes, Liver/metabolism , Estradiol/pharmacology , Hymecromone/pharmacology , Propofol/pharmacology , Enzyme Inhibitors/pharmacology
4.
J Clin Med ; 13(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38892731

ABSTRACT

The treatment of head and neck cancers (HNCs) encompasses a complex paradigm involving a combination of surgery, radiotherapy, and systemic treatment. Locoregional recurrence is a common cause of treatment failure, and few patients are suitable for salvage surgery. Reirradiation with conventional radiation techniques is challenging due to normal tissue tolerance limits and the risk of significant toxicities. Stereotactic body radiotherapy (SBRT) has emerged as a highly conformal modality that offers the potential for cure while limiting the dose to surrounding tissue. There is also growing research that shows that those with oligometastatic disease can benefit from curative intent local ablative therapies such as SBRT. This review will look at published evidence regarding the use of SBRT in locoregional recurrent and oligometastatic HNCs.

6.
Commun Biol ; 7(1): 677, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830977

ABSTRACT

We present a quantitative sandwich immunoassay for CD63 Extracellular Vesicles (EVs) and a constituent surface cargo, EGFR and its activity state, that provides a sensitive, selective, fluorophore-free and rapid alternative to current EV-based diagnostic methods. Our sensing design utilizes a charge-gating strategy, with a hydrophilic anion exchange membrane functionalized with capture antibodies and a charged silica nanoparticle reporter functionalized with detection antibodies. With sensitivity and robustness enhancement by the ion-depletion action of the membrane, this hydrophilic design with charged reporters minimizes interference from dispersed proteins, thus enabling direct plasma analysis without the need for EV isolation or sensor blocking. With a LOD of 30 EVs/µL and a high relative sensitivity of 0.01% for targeted proteomic subfractions, our assay enables accurate quantification of the EV marker, CD63, with colocalized EGFR by an operator/sample insensitive universal normalized calibration. We analysed untreated clinical samples of Glioblastoma to demonstrate this new platform. Notably, we target both total and "active" EGFR on EVs; with a monoclonal antibody mAb806 that recognizes a normally hidden epitope on overexpressed or mutant variant III EGFR. Analysis of samples yielded an area-under-the-curve (AUC) value of 0.99 and a low p-value of 0.000033, surpassing the performance of existing assays and markers.


Subject(s)
ErbB Receptors , Extracellular Vesicles , Glioblastoma , Tetraspanin 30 , Humans , Glioblastoma/blood , Glioblastoma/diagnosis , Glioblastoma/metabolism , Tetraspanin 30/metabolism , ErbB Receptors/metabolism , Extracellular Vesicles/metabolism , Immunoassay/methods , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Brain Neoplasms/blood , Brain Neoplasms/metabolism , Brain Neoplasms/diagnosis
7.
Int J Biol Macromol ; 272(Pt 2): 132923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848835

ABSTRACT

Severe bleeding from deep and irregular wounds poses a significant challenge in prehospital and surgical settings. To address this issue, we developed a novel chitosan-based hemostatic dressing with a magnetic targeting mechanism using Fe3O4, termed bovine serum albumin-modified Fe3O4 embedded in porous α-ketoglutaric acid/chitosan (BSA/Fe3O4@KA/CS). This dressing enhances hemostasis by magnetically guiding the agent to the wound site. In vitro, the hemostatic efficacy of BSA/Fe3O4@KA/CS is comparable to that of commercial chitosan (Celox™) and is not diminished by the modification. In vivo, BSA/Fe3O4@KA/CS demonstrated superior hemostatic performance and reduced blood loss compared to Celox™. The hemostatic mechanism of BSA/Fe3O4@KA/CS includes the concentration of solid blood components through water absorption, adherence to blood cells, and activation of the endogenous coagulation pathway. Magnetic field targeting is crucial in directing the dressing to deep hemorrhagic sites. Additionally, safety assessments have confirmed the biocompatibility and biodegradability of BSA/Fe3O4@KA/CS. In conclusion, we introduce a novel approach to modify chitosan using magnetic guidance for effective hemostasis, positioning BSA/Fe3O4@KA/CS as a promising candidate for managing various wounds.


Subject(s)
Bandages , Chitosan , Hemostatics , Serum Albumin, Bovine , Chitosan/chemistry , Serum Albumin, Bovine/chemistry , Animals , Hemostatics/chemistry , Hemostatics/pharmacology , Porosity , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/pharmacology , Cattle , Male , Hemorrhage/drug therapy , Hemorrhage/therapy , Mice
8.
Brain Res Bull ; 213: 110986, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810789

ABSTRACT

Cerebral ischemia-reperfusion injury (CIRI), a prevalent stroke-related complication, can lead to severe brain damage. Inflammation is a crucial factor in CIRI pathogenesis, and the complement component 3a receptor (C3aR) could be a key mediator in the post-CIRI inflammatory cascade. In this study, the role of C3aR in CIRI was investigated utilizing a middle cerebral artery occlusion (MCAO) model in C3aR knockout (KO) mice. Magnetic resonance imaging (MRI) and neurofunctional assessments revealed that C3aR KO mice exhibited significantly diminished cerebral infarction and improved neurological impairments. Consequently, the focus shifted to searching for a small molecule antagonist of C3aR. JR14a, a new potent thiophene antagonist of C3aR, was injected intraperitoneally into mice 1-h post-MCAO model implementation. The mass spectrometry (MS) results indicated the ability of JR14a to penetrate the blood-brain barrier. Subsequent TTC staining and neurofunctional assessments revealed the efficacy of JR14a in reducing cerebral infarct volume and neurological impairment following MCAO. In addition, immunofluorescence (IF) and immunohistochemistry (IHC) demonstrated attenuated microglial activation, neutrophil infiltration, and blood-brain barrier disruption by JR14a in the MCAO model. Furthermore, enzyme-linked immunosorbent assay (ELISA) and Western blotting supported the role of JR14a in downregulating the expression levels of C3aR, tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), as well as the phosphorylation of p65. In conclusion, the findings suggested that C3aR could be a potential therapeutic target for CIRI, and JR14a emerged as a promising treatment candidate.


Subject(s)
Infarction, Middle Cerebral Artery , Mice, Knockout , Neuroinflammatory Diseases , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Mice , Male , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Mice, Inbred C57BL , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Receptors, Complement/antagonists & inhibitors , Receptors, Complement/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Disease Models, Animal , Microglia/drug effects , Microglia/metabolism , Thiophenes/pharmacology , Thiophenes/therapeutic use , Neuroprotective Agents/pharmacology , Inflammation/drug therapy , Inflammation/metabolism
9.
Clin Transl Med ; 14(6): e1727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804617

ABSTRACT

BACKGROUND: The liver is anatomically divided into eight segments based on the distribution of Glisson's triad. However, the molecular mechanisms underlying each segment and its association with hepatocellular carcinoma (HCC) heterogeneity are not well understood. In this study, our objective is to conduct a comprehensive multiomics profiling of the segmentation atlas in order to investigate potential subtypes and therapeutic approaches for HCC. METHODS: A high throughput liquid chromatography-tandem mass spectrometer strategy was employed to comprehensively analyse proteome, lipidome and metabolome data, with a focus on segment-resolved multiomics profiling. To classify HCC subtypes, the obtained data with normal reference profiling were integrated. Additionally, potential therapeutic targets for HCC were identified using immunohistochemistry assays. The effectiveness of these targets were further validated through patient-derived organoid (PDO) assays. RESULTS: A multiomics profiling of 8536 high-confidence proteins, 1029 polar metabolites and 3381 nonredundant lipids was performed to analyse the segmentation atlas of HCC. The analysis of the data revealed that in normal adjacent tissues, the left lobe was primarily involved in energy metabolism, while the right lobe was associated with small molecule metabolism. Based on the normal reference atlas, HCC patients with segment-resolved classification were divided into three subtypes. The C1 subtype showed enrichment in ribosome biogenesis, the C2 subtype exhibited an intermediate phenotype, while the C3 subtype was closely associated with neutrophil degranulation. Furthermore, using the PDO assay, exportin 1 (XPO1) and 5-lipoxygenase (ALOX5) were identified as potential targets for the C1 and C3 subtypes, respectively. CONCLUSION: Our extensive analysis of the segmentation atlas in multiomics profiling defines molecular subtypes of HCC and uncovers potential therapeutic strategies that have the potential to enhance the prognosis of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Humans , Male , Multiomics
10.
Heliyon ; 10(10): e31143, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813237

ABSTRACT

In order to investigate the effects of different drying methods on the properties of porous starch. The present study used four drying methods, namely hot air drying (HD), spray drying (SPD), vacuum freeze drying (FD) and supercritical carbon dioxide drying (SCD) to prepare maize and kudzu porous starch. Findings indicated that the physicochemical properties (e.g., morphology, crystallinity, enthalpy value, porosity, surface area and water absorption capacity as well as dye absorption capacity, particle size) of porous starch were significantly affected by the drying method. Compared with other samples, SCD-treated porous starch exhibited the highest surface areas of the starch (2.943 and 3.139 m2/g corresponding to kudzu and maize, respectively), amylose content (22.02 % and 16.85 % corresponding to kudzu and maize, respectively), MB and NR absorption capacity (90.63 %, 100.26 % and 90.63 %, 100.26 %, corresponding to kudzu ad maize, respectively), and thermal stability, whereas HD-treated porous starch showed the highest water-absorption capacity (123.8 % and 131.31 % corresponding to kudzu and maize, respectively). The dye absorption of the maize and kudzu porous starch was positively correlated with surface area, according to Pearson's correlation analysis. Therefore, in this study, our aim was to explore the effects of different drying methods on the Structure and properties of porous starch, and provide reference for selecting the best drying method for its application in different fields.

11.
Polymers (Basel) ; 16(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543468

ABSTRACT

A traumatic hemorrhage is fatal due to the great loss of blood in a short period of time; however, there are a few biomaterials that can stop the bleeding quickly due to the limited water absorption speed. Here, a highly absorbent polymer (HPA), polyacrylate, was prepared as it has the best structure-effectiveness relationship. Within a very short period of time (2 min), HPA continually absorbed water until it swelled up to its 600 times its weight; more importantly, the porous structure comprised the swollen dressing. This instantaneous swelling immediately led to rapid hemostasis in irregular wounds. We optimized the HPA preparation process to obtain a rapidly water-absorbent polymer (i.e., HPA-5). HPA-5 showed favorable adhesion and biocompatibility in vitro. A rat femoral arteriovenous complete shear model and a tail arteriovenous injury model were established. HPA exhibited excellent hemostatic capability with little blood loss and short hemostatic time compared with CeloxTM in both of the models. The hemostatic mechanisms of HPA consist of fast clotting by aggregating blood cells, activating platelets, and accelerating the coagulation pathway via water absorption and electrostatic interaction. HPA is a promising highly water-absorbent hemostatic dressing for rapid and extensive blood clotting after vessel injury.

12.
Article in English | MEDLINE | ID: mdl-38476123

ABSTRACT

Background: This study analyzed the burden of chronic obstructive pulmonary disease (COPD) in China, the United States, and India from 1990 to 2019 and projected the trends for the next decade. Methods: This study utilized the GBD 2019 to compare the age-standardized incidence rate (ASIR), age-standardized mortality rate (ASMR), age-standardized disability-adjusted life years (DALYs) rate, and the proportion attributed to different risk factors in China, the United States, and India. Joinpoint models and autoregressive integrated moving average (ARIMA) models were employed to capture the changing trends in disease burden and forecast outcomes. Results: From 1990 to 2019, China's age-standardized COPD incidence and mortality rates decreased by 29% and 70%, respectively. In the same period, India's rates decreased by 8% and 33%, while the United States saw an increase of 9% in COPD incidence and a 22% rise in mortality rates. Smoking and ambient particulate matter pollution are the two most significant risk factors for COPD, while household air pollution from solid fuels and low temperatures are the least impactful factors in the United States and India, respectively. The proportion of risk from household air pollution from solid fuels is higher in India than in China and the United States. Predictions for 2030 suggest that the age-standardized DALY rates, ASIR, and ASMR in the United States and India are expected to remain stable or decrease, while China's age-standardized incidence rate is projected to rise. Conclusion: Over the past three decades, the incidence of COPD has been decreasing in China and India, while showing a slight increase in the United States. Smoking and ambient particulate matter pollution are the primary risk factors for men and women, respectively. The risk of household air pollution from solid fuels in India needs attention.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Male , Humans , Female , United States , Pulmonary Disease, Chronic Obstructive/epidemiology , Quality-Adjusted Life Years , China/epidemiology , Particulate Matter , India/epidemiology
13.
Mol Biotechnol ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429624

ABSTRACT

Intraventricular hemorrhage results in posthemorrhagic hydrocephalus (PHH). Neonatal hydrocephalus remains a challenging disease due to the high failure rate of all management strategies. We evaluated long noncoding RNA growth arrest-specific 5 (GAS5)-mediated network in neonatal hydrocephalus, providing a new direction for the treatment of hydrocephalus. The PHH model was constructed in neonatal rats after intracerebroventricular injection with GAS5, miR-325-3p, and chaperonin containing T-complex protein 1, subunit 8 (CCT8) plasmids, or oligonucleotides. Next, behavioral tests, measurement of serum inflammation, observation of brain tissue pathology, and calculation of hemoglobin and brain water contents were implemented. GAS5, miR-325-3p, and CCT8 expression, in combination with their interactions, was checked. As the results reported, collagenase infusion induced hydrocephalus, impairing neurological function, enhancing inflammation and neuronal apoptosis, and increasing hemoglobin and brain water contents. GAS5 and CCT8 were up-regulated, while miR-325-3p was down-regulated in hydrocephalic rats. Downregulating GAS5/CCT8 or upregulating miR-325-3p could inhibit inflammatory response and improve neurological function in young hydrocephalic rats. GAS5 promotes CCT8 expression through sponge adsorption of miR-325-3p. GAS5 silencing-mediated protections against hydrocephalus were counteracted by CCT8 overexpression. In summary, GAS5 aggravates neonatal hydrocephalus and inflammatory responses in a way of leasing miR-325-3p-involved regulation of CCT8.

14.
Neurobiol Dis ; 192: 106434, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341160

ABSTRACT

Innate inflammation is crucial for ischemic stroke development. NLRP6, a nucleotide-binding and oligomerization domain-like receptors (NLRs) family member, regulates innate inflammation. Whether NLRP6 regulates neurological damage and neuroinflammation during ischemic stroke remains unclear. We report that NLRP6 is abundantly expressed in microglia and significantly upregulated in the ischemic brain. The brain injury severity was alleviated in NLRP6-deficient mice after ischemic stroke, as evidenced by reduced cerebral infarct volume, decreased neurological deficit scores, improved histopathological morphological changes, ameliorated neuronal denaturation, and relief of sensorimotor dysfunction. In the co-culture OGD/R model, NLRP6 deficiency prevented neuronal death and attenuated microglial cell injury. NLRP6 deficiency blocked several NLRs inflammasomes' activation and abrogated inflammasome-related cytokine production by decreasing the expression of the common effector pro-caspase-1. NLRP6 deficiency reduced pro-caspase-1's protein level by inducing proteasomal degradation. These findings confirm the neuroprotective role of NLRP6 deficiency in ischemic stroke and its underlying regulation mechanism in neuroinflammation and provide a potential therapeutic target for ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Animals , Mice , Caspase 1/metabolism , Inflammasomes/metabolism , Inflammation , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
15.
Nat Commun ; 15(1): 1347, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355644

ABSTRACT

Accurate identification and localization of multiple abnormalities are crucial steps in the interpretation of chest X-rays (CXRs); however, the lack of a large CXR dataset with bounding boxes severely constrains accurate localization research based on deep learning. We created a large CXR dataset named CXR-AL14, containing 165,988 CXRs and 253,844 bounding boxes. On the basis of this dataset, a deep-learning-based framework was developed to identify and localize 14 common abnormalities and calculate the cardiothoracic ratio (CTR) simultaneously. The mean average precision values obtained by the model for 14 abnormalities reached 0.572-0.631 with an intersection-over-union threshold of 0.5, and the intraclass correlation coefficient of the CTR algorithm exceeded 0.95 on the held-out, multicentre and prospective test datasets. This framework shows an excellent performance, good generalization ability and strong clinical applicability, which is superior to senior radiologists and suitable for routine clinical settings.


Subject(s)
Abnormalities, Multiple , Deep Learning , Humans , Prospective Studies , X-Rays , Cardiomegaly/diagnostic imaging
16.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338716

ABSTRACT

Transcription factors within microglia contribute to the inflammatory response following intracerebral hemorrhage (ICH). Therefore, we employed bioinformatics screening to identify the potential transcription factor tonicity-responsive enhancer-binding protein (TonEBP) within microglia. Inflammatory stimuli can provoke an elevated expression of TonEBP in microglia. Nevertheless, the expression and function of microglial TonEBP in ICH-induced neuroinflammation remain ambiguous. In our recent research, we discovered that ICH instigated an increased TonEBP in microglia in both human and mouse peri-hematoma brain tissues. Furthermore, our results indicated that TonEBP knockdown mitigates lipopolysaccharide (LPS)-induced inflammation and the activation of NF-κB signaling in microglia. In order to more deeply comprehend the underlying molecular mechanisms of how TonEBP modulates the inflammatory response, we sequenced the transcriptomes of TonEBP-deficient cells and sought potential downstream target genes of TonEBP, such as Pellino-1 (PELI1). PELI has been previously reported to mediate nuclear factor-κB (NF-κB) signaling. Through the utilization of CUT & RUN, a dual-luciferase reporter, and qPCR, we confirmed that TonEBP is the transcription factor of Peli1, binding to the Peli1 promoter. In summary, TonEBP may enhance the LPS-induced inflammation and activation of NF-κB signaling via PELI1.


Subject(s)
Cerebral Hemorrhage , Microglia , NFATC Transcription Factors , Animals , Humans , Mice , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/metabolism , Inflammation/genetics , Inflammation/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Microglia/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
17.
Thromb Haemost ; 124(7): 599-612, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38242171

ABSTRACT

Sepsis represents a syndromic response to infection and frequently acts as a common pathway leading to fatality in the context of various infectious diseases globally. The pathology of severe sepsis is marked by an excess of inflammation and activated coagulation. A substantial contributor to mortality in sepsis patients is widespread microvascular thrombosis-induced organ dysfunction. Multiple lines of evidence support the notion that sepsis induces endothelial damage, leading to the release of glycosaminoglycans, potentially causing microvascular dysfunction. This review aims to initially elucidate the relationship among endothelial damage, excessive inflammation, and thrombosis in sepsis. Following this, we present a summary of the involvement of glycosaminoglycans in coagulation, elucidating interactions among glycosaminoglycans, platelets, and inflammatory cells. In this section, we also introduce a reasoned generalization of potential signal pathways wherein glycosaminoglycans play a role in clotting. Finally, we discuss current methods for detecting microvascular conditions in sepsis patients from the perspective of glycosaminoglycans. In conclusion, it is imperative to pay closer attention to the role of glycosaminoglycans in the mechanism of microvascular thrombosis in sepsis. Dynamically assessing glycosaminoglycan levels in patients may aid in predicting microvascular conditions, enabling the monitoring of disease progression, adjustment of clinical treatment schemes, and mitigation of both acute and long-term adverse outcomes associated with sepsis.


Subject(s)
Blood Coagulation , Glycosaminoglycans , Sepsis , Humans , Sepsis/blood , Sepsis/complications , Glycosaminoglycans/blood , Animals , Blood Platelets/metabolism , Microvessels , Signal Transduction , Inflammation/blood , Microcirculation , Thrombosis/blood
18.
Plant Physiol Biochem ; 207: 108384, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38277834

ABSTRACT

In plants, CBL mediated calcium signaling is widely involved in the response to plant stresses of adversity. However, to date, no comprehensive studies have been conducted on CBL family members in Salvia miltiorrhiza. Herein, we identified 8 SmCBLs in S. miltiorrhiza, and phylogenetic analysis classified SmCBLs into four groups. Analysis of cis-acting elements revealed that SmCBLs mostly have light-responsive and hormone-responsive elements. Tissue expression analysis indicated that almost all of SmCBLs were expressed in roots than in leaves and flowers. SmCBL3 responded to Abscisic Acid (ABA), polyethylene glycol (PEG), and NaCl treatments. Transgenic Arabidopsis thaliana that overexpressed SmCBL3 had higher germination rates and longer roots than the wild type (WT) when exposed to salt stress. Additionally, the transgenic lines exhibited higher levels of chlorophyll, proline, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity and SOS1, NHX1 and P5CS1 expression than WT, and lower levels of malondialdehyde (MDA). Furthermore, SmCBL3 interacts with SmCIPK9. In conclusion, we analyzed the protein physicochemical properties, evolutionary relationships, gene structures, and expression profiles of the SmCBL gene families in S. miltiorrhiza. Overexpression of SmCBL3 improves the salt tolerance of transgenic Arabidopsis. This study demonstrated that SmCBL3 is a positive regulator of plant salt tolerance, so the use of overexpressed SmCBL3 may serve as a potential strategy to enhance plant salt tolerance.


Subject(s)
Arabidopsis , Salvia miltiorrhiza , Salvia miltiorrhiza/metabolism , Plants, Genetically Modified/genetics , Phylogeny , Stress, Physiological/genetics , Arabidopsis/metabolism , Salt Tolerance/genetics , Antioxidants/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
19.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255822

ABSTRACT

Sepsis ranks among the most common health problems worldwide, characterized by organ dysfunction resulting from infection. Excessive inflammatory responses, cytokine storms, and immune-induced microthrombosis are pivotal factors influencing the progression of sepsis. Our objective was to identify novel immune-related hub genes for sepsis through bioinformatic analysis, subsequently validating their specificity and potential as diagnostic and prognostic biomarkers in an animal experiment involving a sepsis mice model. Gene expression profiles of healthy controls and patients with sepsis were obtained from the Gene Expression Omnibus (GEO) and analysis of differentially expressed genes (DEGs) was conducted. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to analyze genes within crucial modules. The functional annotated DEGs which related to the immune signal pathways were used for constructing protein-protein interaction (PPI) analysis. Following this, two hub genes, FERMT3 and CD3G, were identified through correlation analyses associated with sequential organ failure assessment (SOFA) scores. These two hub genes were associated with cell adhesion, migration, thrombosis, and T-cell activation. Furthermore, immune infiltration analysis was conducted to investigate the inflammation microenvironment influenced by the hub genes. The efficacy and specificity of the two hub genes were validated through a mice sepsis model study. Concurrently, we observed a significant negative correlation between the expression of CD3G and IL-1ß and GRO/KC. These findings suggest that these two genes probably play important roles in the pathogenesis and progression of sepsis, presenting the potential to serve as more stable biomarkers for sepsis diagnosis and prognosis, deserving further study.


Subject(s)
Animal Experimentation , Sepsis , Animals , Humans , Mice , Biomarkers , Cell Adhesion , Computational Biology , Disease Models, Animal , Sepsis/genetics
20.
World Allergy Organ J ; 17(2): 100866, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38283080

ABSTRACT

This research analyzed data from 5106 participants in the National Health and Nutrition Examination Survey 2005-2006 to explore the link between indoor allergen concentrations, serum IgE levels, and allergic diseases. The study found that 14.9% of participants reported having asthma, with significant differences noted in the concentrations of certain indoor allergens, specifically dust dog, mite, and cat allergens, between asthma and non-asthma groups. Furthermore, positivity rates for inhalant allergen-specific IgE and total IgE were higher in the asthma group. However, the correlations between most inhalant allergen IgE, including total IgE, and indoor allergen concentrations were very weak. These findings suggest that the relationship between indoor allergen concentrations and asthma incidence is complex, indicating a potential need for personalized allergen prevention strategies based on disease type and patient sensitization.

SELECTION OF CITATIONS
SEARCH DETAIL
...