Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Front Cardiovasc Med ; 11: 1334226, 2024.
Article in English | MEDLINE | ID: mdl-38500750

ABSTRACT

Introduction: Heart failure with preserved ejection fraction (HFpEF) is a complex disease process influenced by metabolic disorders, systemic inflammation, myocardial fibrosis, and microvascular dysfunction. The goal of our study is to identify potential relationships between plasma biomarkers and cardiac magnetic resonance (CMR) imaging markers in patients with HFpEF. Methods: Nineteen subjects with HFpEF and 15 age-matched healthy controls were enrolled and underwent multiparametric CMR and plasma biomarker analysis using the Olink® Cardiometabolic Panel (Olink Proteomics, Uppsala, Sweden). Partial least squares discriminant analysis (PLS-DA) was used to characterize CMR and biomarker variables that differentiate the subject groups into two principal components. Orthogonal projection to latent structures by partial least squares (OPLS) analysis was used to identify biomarker patterns that correlate with myocardial perfusion reserve (MPR) and extracellular volume (ECV) mapping. Results: A PLS-DA could differentiate between HFpEF and normal controls with two significant components explaining 79% (Q2 = 0.47) of the differences. For OPLS, there were 7 biomarkers that significantly correlated with ECV (R2 = 0.85, Q = 0.53) and 6 biomarkers that significantly correlated with MPR (R2 = 0.92, Q2 = 0.32). Only 1 biomarker significantly correlated with both ECV and MPR. Discussion: Patients with HFpEF have unique imaging and biomarker patterns that suggest mechanisms associated with metabolic disease, inflammation, fibrosis and microvascular dysfunction.

2.
Cardiol Res Pract ; 2024: 6664482, 2024.
Article in English | MEDLINE | ID: mdl-38204600

ABSTRACT

Background: Using a fluid-filled wire with a pressure sensor outside the patient compared to a conventional pressure wire may avoid the systematic error introduced by the hydrostatic pressure within the coronary circulation. Aims: To assess the safety and effectiveness of the novel fluid-filled wire, Wirecath (Cavis Technologies, Uppsala, Sweden), as well as its ability to avoid the hydrostatic pressure error. Methods and Results: The Wirecath pressure wire was used in 45 eligible patients who underwent invasive coronary angiography and had a clinical indication for invasive coronary pressure measurement at Sahlgrenska University Hospital, Gothenburg, Sweden. In 29 patients, a simultaneous measurement was performed with a conventional coronary pressure wire (PressureWire X, Abbott Medical, Plymouth, MN, USA), and in 19 patients, the vertical height difference between the tip of the guide catheter and the wire measure point was measured in a 90-degree lateral angiographic projection. No adverse events caused by the pressure wires were reported. The mean Pd/Pa and mean FFR using the fluid-filled wire and the sensor-tipped wire differed significantly; however, after correcting for the hydrostatic effect, the sensor-tipped wire pressure correlated well with the fluid-filled wire pressure (R = 0.74 vs. R = 0.89 at rest and R = 0.89 vs. R = 0.98 at hyperemia). Conclusion: Hydrostatic errors in physiologic measurements can be avoided by using the fluid-filled Wirecath wire, which was safe to use in the present study. This trial is registered with NCT04776577 and NCT04802681.

3.
Eur Heart J Digit Health ; 5(1): 60-68, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38264705

ABSTRACT

Aims: Echocardiographic strain imaging reflects myocardial deformation and is a sensitive measure of cardiac function and wall-motion abnormalities. Deep learning (DL) algorithms could automate the interpretation of echocardiographic strain imaging. Methods and results: We developed and trained an automated DL-based algorithm for left ventricular (LV) strain measurements in an internal dataset. Global longitudinal strain (GLS) was validated externally in (i) a real-world Taiwanese cohort of participants with and without heart failure (HF), (ii) a core-lab measured dataset from the multinational prevalence of microvascular dysfunction-HF and preserved ejection fraction (PROMIS-HFpEF) study, and regional strain in (iii) the HMC-QU-MI study of patients with suspected myocardial infarction. Outcomes included measures of agreement [bias, mean absolute difference (MAD), root-mean-squared-error (RMSE), and Pearson's correlation (R)] and area under the curve (AUC) to identify HF and regional wall-motion abnormalities. The DL workflow successfully analysed 3741 (89%) studies in the Taiwanese cohort, 176 (96%) in PROMIS-HFpEF, and 158 (98%) in HMC-QU-MI. Automated GLS showed good agreement with manual measurements (mean ± SD): -18.9 ± 4.5% vs. -18.2 ± 4.4%, respectively, bias 0.68 ± 2.52%, MAD 2.0 ± 1.67, RMSE = 2.61, R = 0.84 in the Taiwanese cohort; and -15.4 ± 4.1% vs. -15.9 ± 3.6%, respectively, bias -0.65 ± 2.71%, MAD 2.19 ± 1.71, RMSE = 2.78, R = 0.76 in PROMIS-HFpEF. In the Taiwanese cohort, automated GLS accurately identified patients with HF (AUC = 0.89 for total HF and AUC = 0.98 for HF with reduced ejection fraction). In HMC-QU-MI, automated regional strain identified regional wall-motion abnormalities with an average AUC = 0.80. Conclusion: DL algorithms can interpret echocardiographic strain images with similar accuracy as conventional measurements. These results highlight the potential of DL algorithms to democratize the use of cardiac strain measurements and reduce time-spent and costs for echo labs globally.

4.
J Card Fail ; 30(1): 104-110, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37072105

ABSTRACT

BACKGROUND: Inflammation is a key driver of heart failure with preserved left ventricular ejection fraction. AZD4831 inhibits extracellular myeloperoxidase, decreases inflammation, and improves microvascular function in preclinical disease models. METHODS AND RESULTS: In this double-blind phase 2a study (Safety and Tolerability Study of AZD4831 in Patients With Heart Failure [SATELLITE]; NCT03756285), patients with symptomatic heart failure, left ventricular ejection fraction of ≥40%, and elevated B-type natriuretic peptides were randomized 2:1 to once-daily oral AZD4831 5 mg or placebo for 90 days. We aimed to assess target engagement (primary end point: myeloperoxidase specific activity) and safety of AZD4831. Owing to coronavirus disease 2019, the study was terminated early after randomizing 41 patients (median age 74.0 years, 53.7% male). Myeloperoxidase activity was decreased by more than 50% from baseline to day 30 and day 90 in the AZD4831 group, with a placebo-adjusted decreased of 75% (95% confidence interval, 48, 88, nominal P < .001). No improvements were noted in secondary or exploratory end points, apart from a trend in Kansas City Cardiomyopathy Questionnaire overall summary score. No deaths or treatment-related serious adverse events occurred. AZD4831 treatment-related adverse events were generalized maculopapular rash, pruritus, and diarrhea (all n = 1). CONCLUSIONS: AZD4831 inhibited myeloperoxidase and was well tolerated in patients with heart failure and left ventricular ejection fraction of 40% or greater. Efficacy findings were exploratory owing to early termination, but warrant further clinical investigation of AZD4831. LAY SUMMARY: Few treatments are available for patients with the forms of heart failure known as heart failure with preserved or mildly reduced ejection fraction. Current treatments do not target inflammation, which may play an important role in this condition. We tested a new drug called AZD4831 (mitiperstat), which decreases inflammation by inhibiting the enzyme myeloperoxidase. Among the 41 patients in our clinical trial, AZD4831 had a good safety profile and inhibited myeloperoxidase by the expected amount. Results mean we can conduct further trials to see whether AZD4831 decreases the symptoms of heart failure and improves patients' ability to participate in physical exercise.


Subject(s)
Heart Failure , Aged , Female , Humans , Male , Inflammation , Peroxidase/therapeutic use , Stroke Volume/physiology , Ventricular Function, Left
5.
ESC Heart Fail ; 10(6): 3729-3734, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37920127

ABSTRACT

AIMS: In heart failure with preserved ejection fraction (HFpEF), regional heterogeneity of clinical phenotypes is increasingly recognized, with coronary microvascular dysfunction (CMD) potentially being a common shared feature. We sought to determine the regional differences in clinical characteristics and prevalence of CMD in HFpEF. METHODS AND RESULTS: We analysed clinical characteristics and CMD in 202 patients with stable HFpEF (left ventricular ejection fraction ≥40%) in Finland, Singapore, Sweden, and United States in the multicentre PROMIS-HFpEF study. Patients with unrevascularized macrovascular coronary artery disease were excluded. CMD was assessed using Doppler echocardiography and defined as coronary flow reserve (adenosine-induced vs. resting flow) < 2.5. Patients from Singapore had the lowest body mass index yet highest prevalence of hypertension, dyslipidaemia, and diabetes; patients from Finland and Sweden were oldest, with the most atrial fibrillation, chronic kidney disease, and high smoking rates; and those from United States were youngest and most obese. The prevalence of CMD was 88% in Finland, 80% in Singapore, 77% in Sweden, and 59% in the United States; however, non-significant after adjustment for age, sex, N-terminal pro-brain natriuretic peptide, smoking, left atrial reservoir strain, and atrial fibrillation. Associations between CMD and clinical characteristics did not differ based on region (interaction analysis). CONCLUSIONS: Despite regional differences in clinical characteristics, CMD was present in the majority of patients with HFpEF across different regions of the world with the lowest prevalence in the United States. This difference was explained by differences in patient characteristics. CMD could be a common therapeutic target across regions.


Subject(s)
Atrial Fibrillation , Coronary Artery Disease , Heart Failure , Humans , United States , Stroke Volume , Ventricular Function, Left , Coronary Artery Disease/epidemiology
6.
EClinicalMedicine ; 59: 101985, 2023 May.
Article in English | MEDLINE | ID: mdl-37256099

ABSTRACT

Background: Phosphodiesterase-5 inhibitors exert positive vascular and metabolic effects in type 2 diabetes (T2D), but the effect on insulin resistance in T2D is unclear. Methods: This randomised, double blind, placebo-controlled, two-period crossover trial was conducted at Sahlgrenska University Hospital (Gothenburg, Sweden). Men without apparent erectile dysfunction (age 40-70 years) and women (age 55-70 years, post-menopause) diagnosed with T2D between 3 months and 10 years, haemoglobin A1c (HbA1c) < 60 mmol/mol and a body mass index (BMI) 27-40 kg/m2 were enrolled. Participants were randomly assigned to one period of oral tadalafil 20 mg once a day and one period of placebo for 6 weeks, separated by an 8-week wash-out period. Placebo and tadalafil tablets were made visually indistinguishable and delivered randomized in two separate boxes for each participant. Both treatment periods ended with a glucose clamp, and measurements of body composition and metabolic markers in blood, subcutaneous and muscular interstitial fluid. The primary aim was to assess difference in whole-body insulin resistance after 6-weeks of treatment, determined after completion of the two study arms, and secondary aims were to study effects of tadalafil on pathophysiology of T2D as well as tolerability of high-dose tadalafil in T2D. Primary analysis was performed in participants with full analysis set (FAS) and safety analysis in all participants who received at least one dose of study medication. This trial is registered with ClinicalTrials.gov (NCT02601989), and EudraCT (2015-000573). Findings: Between January 22nd, 2016, and January 31st, 2019, 23 participants with T2D were enrolled, of whom 18 were included in the full analysis set. The effect of tadalafil on insulin resistance was neutral compared with placebo. However, tadalafil decreased glycaemia measured as HbA1c (mean difference -2.50 mmol/mol, 95% confidence interval (CI), -4.20; -0.78, p = 0.005), and, further, we observed amelioration of endothelial function and markers of liver steatosis and glycolysis, whereas no statistically significant differences of other clinical phenotyping were shown. Muscle pain, dyspepsia, and headache were more frequent in participants on high-dose tadalafil compared with placebo (p < 0.05) but no difference between treatments appeared for serious adverse events. Interpretation: High-dose tadalafil does not decrease whole-body insulin resistance, but increases microcirculation, induces positive effects in the liver and in intermediate metabolites, in parallel with an improved metabolic control measured as HbA1c. High-dose tadalafil is moderately well tolerated, warranting larger trials to define the optimal treatment regimen in T2D. Funding: The Swedish Research Council, Swedish Diabetes Foundation, Novo Nordisk Foundation, the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement, Sahlgrenska University Hospital funds, Gothenburg Society of Medicine, Eli Lilly & Company, USA, and Eli Lilly & Company, Sweden AB.

7.
JACC Heart Fail ; 11(7): 775-787, 2023 07.
Article in English | MEDLINE | ID: mdl-37140510

ABSTRACT

BACKGROUND: Systemic microvascular dysfunction and inflammation are postulated to play a pathophysiologic role in heart failure with preserved ejection fraction (HFpEF). OBJECTIVES: This study aimed to identify biomarker profiles associated with clinical outcomes in HFpEF and investigate how inhibition of the neutrophil-derived reactive oxygen species-producing enzyme, myeloperoxidase, affects these biomarkers. METHODS: Using supervised principal component analyses, the investigators assessed the associations between baseline plasma proteomic Olink biomarkers and clinical outcomes in 3 independent observational HFpEF cohorts (n = 86, n = 216, and n = 242). These profiles were then compared with the biomarker profiles discriminating patients treated with active drug vs placebo in SATELLITE (Safety and Tolerability Study of AZD4831 in Patients With Heart Failure), a double-blind randomized 3-month trial evaluating safety and tolerability of the myeloperoxidase inhibitor AZD4831 in HFpEF (n = 41). Pathophysiological pathways were inferred from the biomarker profiles by interrogation of the Ingenuity Knowledge Database. RESULTS: TNF-R1, TRAIL-R2, GDF15, U-PAR, and ADM were the top individual biomarkers associated with heart failure hospitalization or death, and FABP4, HGF, RARRES2, CSTB, and FGF23 were associated with lower functional capacity and poorer quality of life. AZD4831 downregulated many markers (most significantly CDCP1, PRELP, CX3CL1, LIFR, VSIG2). There was remarkable consistency among pathways associated with clinical outcomes in the observational HFpEF cohorts, the top canonical pathways being associated with tumor microenvironments, wound healing signaling, and cardiac hypertrophy signaling. These pathways were predicted to be downregulated in AZD4831 relative to placebo-treated patients. CONCLUSIONS: Biomarker pathways that were most strongly associated with clinical outcomes were also the ones reduced by AZD4831. These results support the further investigation of myeloperoxidase inhibition in HFpEF.


Subject(s)
Heart Failure , Humans , Antigens, Neoplasm/therapeutic use , Biomarkers , Cell Adhesion Molecules/therapeutic use , Peroxidase/therapeutic use , Proteomics , Quality of Life , Stroke Volume/physiology
8.
Heart Lung Circ ; 32(6): 702-708, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37045652

ABSTRACT

BACKGROUND: The pleiotropic action of ticagrelor, with effects in addition to platelet inhibition, has been shown to improve endothelial function in patients with coronary artery disease. These positive effects are possibly adenosine mediated. This study investigated the association of ticagrelor therapy and coronary artery flow reserve in survivors of myocardial infarction (MI). METHODS: This was an exploratory, cross-sectional, open substudy of PROFLOW. High-risk individuals with a history of MI were identified. Coronary flow reserve (CFR) was measured non-invasively in the left anterior descending artery using transthoracic Doppler echocardiography. Coronary flow velocity was measured at rest and at maximal flow after induction of hyperaemia by intravenous infusion of adenosine at 140 µg/kg/min. Patients receiving ticagrelor (n=75) were compared with those not receiving ticagrelor (n=506), using simple and multiple linear regression models. Most patients in both groups were treated with aspirin (97% in the ticagrelor and 94% in the non-ticagrelor group). Adjustment for traditional risk factors was conducted. RESULTS: The mean age at study inclusion was 68.5±6.8 years, and most patients were male (81.8%). The simple linear regression analysis showed ticagrelor treatment to be significantly associated with increased CFR: ticagrelor 2.95±0.76 (mean±SD), non-ticagrelor 2.70±0.77, (coefficient 0.25; 95% CI 0.063-0.438; p=0.009). This association was significant in two of the three multiple linear regression models with increasing numbers of variables: Model 1 (0.28; 0.06-0.50; p=0.014), Model 2 (0.26; 0.03-0.48; p=0.025), and borderline significant in Model 3 (0.21; -0.01 to 0.43; p=0.058). CONCLUSIONS: Ticagrelor treatment was associated with increased CFR in this high-risk population. Increased CFR may be a clinically important therapeutic effect of ticagrelor in addition to platelet inhibition.


Subject(s)
Myocardial Infarction , Humans , Male , Female , Ticagrelor/pharmacology , Cross-Sectional Studies , Adenosine/pharmacology , Survivors , Coronary Circulation/physiology
9.
Mol Ther ; 31(3): 866-874, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36528793

ABSTRACT

Vascular endothelial growth factor A (VEGF-A) has therapeutic cardiovascular effects, but delivery challenges have impeded clinical development. We report the first clinical study of naked mRNA encoding VEGF-A (AZD8601) injected into the human heart. EPICCURE (ClinicalTrials.gov: NCT03370887) was a randomized, double-blind study of AZD8601 in patients with left ventricular ejection fraction (LVEF) 30%-50% who were undergoing elective coronary artery bypass surgery. Thirty epicardial injections of AZD8601 (total 3 mg) or placebo in citrate-buffered saline were targeted to ischemic but viable myocardial regions mapped using quantitative [15O]-water positron emission tomography. Seven patients received AZD8601 and four received placebo and were followed for 6 months. There were no deaths or treatment-related serious adverse events and no AZD8601-associated infections, immune reactions, or arrhythmias. Exploratory outcomes indicated potential improvement in LVEF, Kansas City Cardiomyopathy Questionnaire scores, and N-terminal pro-B-type natriuretic peptide levels, but the study is limited in size, and significant efficacy conclusions are not possible from the dataset. Naked mRNA without lipid encapsulation may provide a safe delivery platform for introducing genetic material to cardiac muscle, but further studies are needed to confirm efficacy and safety in a larger patient pool.


Subject(s)
Myocardial Ischemia , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/genetics , Stroke Volume , Ventricular Function, Left , Coronary Artery Bypass/adverse effects , Coronary Artery Bypass/methods , Heart , Treatment Outcome , Myocardial Ischemia/therapy
10.
Nat Cardiovasc Res ; 1(1): 85-100, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36276926

ABSTRACT

Coronary atherosclerosis results from the delicate interplay of genetic and exogenous risk factors, principally taking place in metabolic organs and the arterial wall. Here we show that 224 gene-regulatory coexpression networks (GRNs) identified by integrating genetic and clinical data from patients with (n = 600) and without (n = 250) coronary artery disease (CAD) with RNA-seq data from seven disease-relevant tissues in the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) study largely capture this delicate interplay, explaining >54% of CAD heritability. Within 89 cross-tissue GRNs associated with clinical severity of CAD, 374 endocrine factors facilitated inter-organ interactions, primarily along an axis from adipose tissue to the liver (n = 152). This axis was independently replicated in genetically diverse mouse strains and by injection of recombinant forms of adipose endocrine factors (EPDR1, FCN2, FSTL3 and LBP) that markedly altered blood lipid and glucose levels in mice. Altogether, the STARNET database and the associated GRN browser (http://starnet.mssm.edu) provide a multiorgan framework for exploration of the molecular interplay between cardiometabolic disorders and CAD.

11.
Eur J Heart Fail ; 24(12): 2251-2260, 2022 12.
Article in English | MEDLINE | ID: mdl-36196462

ABSTRACT

AIM: Epicardial adipose tissue (EAT) may play a role in the pathophysiology of heart failure with preserved ejection fraction (HFpEF). We investigated associations of EAT with proteomics, coronary flow reserve (CFR), cardiac structure and function, and quality of life (QoL) in the prospective multinational PROMIS-HFpEF cohort. METHODS AND RESULTS: Epicardial adipose tissue was measured by echocardiography in 182 patients and defined as increased if ≥9 mm. Proteins were measured using high-throughput proximity extension assays. Microvascular dysfunction was evaluated with Doppler-based CFR, cardiac structural and functional indices with echocardiography and QoL by Kansas City Cardiomyopathy Questionnaire (KCCQ). Patients with increased EAT (n = 54; 30%) had higher body mass index (32 [28-40] vs. 27 [23-30] kg/m2 ; p < 0.001), lower N-terminal pro-B-type natriuretic peptide (466 [193-1133] vs. 1120 [494-1990] pg/ml; p < 0.001), smaller indexed left ventricular (LV) end-diastolic and left atrial (LA) volumes and tendency to lower KCCQ score. Non-indexed LV/LA volumes did not differ between groups. When adjusted for body mass index, EAT remained associated with LV septal wall thickness (coefficient 1.02, 95% confidence interval [CI] 1.00-1.04; p = 0.018) and mitral E wave deceleration time (coefficient 1.03, 95% CI 1.01-1.05; p = 0.005). Increased EAT was associated with proteomic markers of adipose biology and inflammation, insulin resistance, endothelial dysfunction, and dyslipidaemia but not significantly with CFR. CONCLUSION: Increased EAT was associated with cardiac structural alterations and proteins expressing adiposity, inflammation, lower insulin sensitivity and endothelial dysfunction related to HFpEF pathology, probably driven by general obesity. Potential local mechanical or paracrine effects mediated by EAT remain to be elucidated.


Subject(s)
Heart Failure , Humans , Stroke Volume/physiology , Quality of Life , Ventricular Function, Left/physiology , Prospective Studies , Proteomics , Adipose Tissue/diagnostic imaging , Inflammation/pathology
12.
Int J Cardiol ; 365: 34-40, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35842004

ABSTRACT

BACKGROUND: Leukotrienes are pro-inflammatory vasoactive lipid mediators implicated in the pathophysiology of atherosclerotic cardiovascular disease. We studied the effect of the 5-lipoxygenase-activating protein inhibitor AZD5718 on leukotriene biosynthesis and coronary microvascular function in a single-blind, phase 2a study. METHODS: Patients 7-28 days after myocardial infarction (±ST elevation), with <50% left anterior descending coronary artery stenosis and Thrombolysis in Myocardial Infarction flow grade ≥ 2 after percutaneous coronary intervention, were randomized 2:1:2 to once-daily AZD5718 200 mg or 50 mg, or placebo, in 4- and 12-week cohorts. Change in urine leukotriene E4 (uLTE4) was the primary endpoint, and coronary flow velocity reserve (CFVR; via echocardiography) was the key secondary endpoint. RESULTS: Of 129 randomized patients, 128 received treatment (200 mg, n = 52; 50 mg, n = 25; placebo, n = 51). Statistically significant reductions in uLTE4 levels of >80% were observed in both AZD5718 groups versus the placebo group at 4 and 12 weeks. No significant changes in CFVR were observed for AZD5718 versus placebo. Adverse events (AEs) occurred in 12/18, 3/6 and 6/13 patients receiving 200 mg, 50 mg and placebo, respectively, in the 4-week cohort, and in 27/34, 14/19 and 24/38 patients, respectively, in the 12-week cohort. Serious AEs in seven patients receiving AZD5718 and four receiving placebo were not treatment-related, and there were no deaths. CONCLUSIONS: In patients with recent myocardial infarction, AZD5718 was well tolerated, and leukotriene biosynthesis was dose-dependently inhibited. No significant changes in CFVR were detected. CLINICALTRIALS: gov identifier: NCT03317002.


Subject(s)
5-Lipoxygenase-Activating Protein Inhibitors , Myocardial Infarction , 5-Lipoxygenase-Activating Protein Inhibitors/adverse effects , Coronary Stenosis/drug therapy , Humans , Myocardial Infarction/drug therapy , Pyrazoles , Single-Blind Method , Treatment Outcome
13.
BMC Nephrol ; 23(1): 208, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35698028

ABSTRACT

Diabetic kidney disease (DKD) is the leading cause of kidney failure worldwide. Mortality and morbidity associated with DKD are increasing with the global prevalence of type 2 diabetes. Chronic, sub-clinical, non-resolving inflammation contributes to the pathophysiology of renal and cardiovascular disease associated with diabetes. Inflammatory biomarkers correlate with poor renal outcomes and mortality in patients with DKD. Targeting chronic inflammation may therefore offer a route to novel therapeutics for DKD. However, the DKD patient population is highly heterogeneous, with varying etiology, presentation and disease progression. This heterogeneity is a challenge for clinical trials of novel anti-inflammatory therapies. Here, we present a conceptual model of how chronic inflammation affects kidney function in five compartments: immune cell recruitment and activation; filtration; resorption and secretion; extracellular matrix regulation; and perfusion. We believe that the rigorous alignment of pathophysiological insights, appropriate animal models and pathology-specific biomarkers may facilitate a mechanism-based shift from recruiting 'all comers' with DKD to stratification of patients based on the principal compartments of inflammatory disease activity.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Animals , Biomarkers , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/etiology , Humans , Inflammation/complications , Inflammation/drug therapy , Kidney
14.
Eur J Heart Fail ; 24(4): 681-684, 2022 04.
Article in English | MEDLINE | ID: mdl-35060248

ABSTRACT

AIMS: Little information is available on sex differences in coronary microvascular dysfunction (CMD) in heart failure with preserved ejection fraction (HFpEF). We investigated sex-specific proteomic profiles associated with CMD in patients with HFpEF. METHODS AND RESULTS: Using the prospective multinational PROMIS-HFpEF study (Prevalence of Microvascular Dysfunction in HFpEF; n = 182; 54.6% women), we compared clinical and biomarker correlates of CMD (defined as coronary flow reserve [CFR] <2.5) between men and women with HFpEF. We used lasso penalized regression to analyse 242 biomarkers from high-throughput proximity extension assays, adjusting for age, body mass index, creatinine, smoking and study site. The prevalence of CMD was similarly high in men and women with HFpEF (77% vs. 70%; p = 0.27). Proteomic correlates of CFR differed by sex, with 10 versus 16 non-overlapping biomarkers independently associated with CFR in men versus women, respectively. In men, proteomic correlates of CFR included chemokine ligand 20, brain natriuretic peptide, proteinase 3, transglutaminase 2, pregnancy-associated plasma protein A and tumour necrosis factor receptor superfamily member 14. Among women, the strongest proteomic correlates with CFR were insulin-like growth factor-binding protein 1, phage shock protein D, CUB domain-containing protein 1, prostasin, decorin, FMS-like tyrosine kinase 3, ligand growth differentiation factor 15, spondin-1, delta/notch-like epidermal growth factor-related receptor and tumour necrosis factor receptor superfamily member 13B. Pathway analyses suggested that CMD was related to the inflammation-mediated chemokine and cytokine signalling pathway among men with HFpEF, and the P13-kinase and transforming growth factor-beta signalling pathway among women with HFpEF. CONCLUSION: While the prevalence of CMD among men and women with HFpEF is similar, the drivers of microvascular dysfunction may differ by sex. The current inflammatory paradigm of CMD in HFpEF potentially predominates in men, while derangement in ventricular remodelling and fibrosis may play a more important role in women.


Subject(s)
Heart Failure , Myocardial Ischemia , Biomarkers , Female , Heart Failure/epidemiology , Humans , Ligands , Male , Prospective Studies , Proteomics , Receptors, Tumor Necrosis Factor , Sex Characteristics , Stroke Volume/physiology
16.
Cardiovasc Res ; 118(2): 517-530, 2022 01 29.
Article in English | MEDLINE | ID: mdl-33705529

ABSTRACT

AIMS: Hypertrophic cardiomyopathy (HCM) is characterized by cardiomyocyte hypertrophy and disarray, and myocardial stiffness due to interstitial fibrosis, which result in impaired left ventricular filling and diastolic dysfunction. The latter manifests as exercise intolerance, angina, and dyspnoea. There is currently no specific treatment for improving diastolic function in HCM. Here, we investigated whether myeloperoxidase (MPO) is expressed in cardiomyocytes and provides a novel therapeutic target for alleviating diastolic dysfunction in HCM. METHODS AND RESULTS: Human cardiomyocytes derived from control-induced pluripotent stem cells (iPSC-CMs) were shown to express MPO, with MPO levels being increased in iPSC-CMs generated from two HCM patients harbouring sarcomeric mutations in the MYBPC3 and MYH7 genes. The presence of cardiomyocyte MPO was associated with higher chlorination and peroxidation activity, increased levels of 3-chlorotyrosine-modified cardiac myosin binding protein-C (MYBPC3), attenuated phosphorylation of MYBPC3 at Ser-282, perturbed calcium signalling, and impaired cardiomyocyte relaxation. Interestingly, treatment with the MPO inhibitor, AZD5904, reduced 3-chlorotyrosine-modified MYBPC3 levels, restored MYBPC3 phosphorylation, and alleviated the calcium signalling and relaxation defects. Finally, we found that MPO protein was expressed in healthy adult murine and human cardiomyocytes, and MPO levels were increased in diseased hearts with left ventricular hypertrophy. CONCLUSION: This study demonstrates that MPO inhibition alleviates the relaxation defect in hypertrophic iPSC-CMs through MYBPC3 phosphorylation. These findings highlight cardiomyocyte MPO as a novel therapeutic target for improving myocardial relaxation associated with HCM, a treatment strategy which can be readily investigated in the clinical setting, given that MPO inhibitors are already available for clinical testing.


Subject(s)
Cardiomyopathy, Hypertrophic/drug therapy , Enzyme Inhibitors/pharmacology , Hypertrophy, Left Ventricular/drug therapy , Induced Pluripotent Stem Cells/drug effects , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Peroxidase/antagonists & inhibitors , Ventricular Function, Left/drug effects , Animals , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Cardiomyopathy, Hypertrophic/enzymology , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/physiopathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Disease Models, Animal , Humans , Hypertrophy, Left Ventricular/enzymology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/physiopathology , Induced Pluripotent Stem Cells/enzymology , Induced Pluripotent Stem Cells/pathology , Male , Mice, Inbred C57BL , Mutation, Missense , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Peroxidase/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism
17.
Hum Gene Ther ; 32(19-20): 1295-1307, 2021 10.
Article in English | MEDLINE | ID: mdl-34494459

ABSTRACT

Based on recent success in using modified RNA in clinical applications, we tested the safety, feasibility, and efficacy of direct delivery of citrate-saline-formulated mRNA into an hibernating ischemic heart muscle using an electromechanical mapping and injection catheter system (NOGA/Myostar) in a porcine chronic myocardial ischemia model. Chronic ischemia was induced in domestic pigs (n = 24) using a bottleneck stent placed in the left anterior descending coronary artery. Low (1 mg) and high (7.5 mg) doses of citrate-saline-formulated vascular endothelial growth factor (VEGF)-A165 mRNA were administered in the study. LacZ mRNA and citrate-saline buffer were used as controls. Ten intramyocardial injections (200 µL each) of the mRNAs or citrate-saline buffer were given endovascularly into the hibernating ischemic myocardium using the NOGA catheter. Positron emission tomography 15O-radiowater imaging was performed 7 days after the induction of ischemia and 28 days after the mRNA delivery to measure quantitative myocardial blood perfusion. Coronary angiography, left ventricular function measurements, and clinical chemistry were obtained at each time point. Thirty-five days after the mRNA transfers, pigs were sacrificed, and infarct size and general histology were analyzed. LacZ mRNA pigs were sacrificed 24 h after the transduction. Citrate-saline-formulated mRNA delivery into the ischemic myocardium with endovascular injection catheter did not lead to meaningful transduction with the translation of VEGF-A165, nor therapeutic effects in the heart. VEGF-A165 mRNA showed no statistically significant improvements in left ventricular ejection fraction (LVEF), cardiac output, myocardial perfusion, infarct size, collateral growth, or capillary area in the study groups. However, there was a trend in the high-dose group toward an improved LVEF and cardiac output at rest. No significant adverse effects were observed. In conclusion, the NOGA/Myostar injection catheter system is ineffective in delivering citrate-saline-formulated mRNAs into the heart muscle with the doses and methods used in a porcine chronic myocardial ischemia model.


Subject(s)
Myocardial Ischemia , Vascular Endothelial Growth Factor A , Animals , Catheters , Citric Acid , Myocardial Ischemia/genetics , Myocardial Ischemia/therapy , Myocardium , RNA, Messenger/genetics , Stroke Volume , Swine , Ventricular Function, Left
18.
ESC Heart Fail ; 8(5): 4130-4138, 2021 10.
Article in English | MEDLINE | ID: mdl-34463049

ABSTRACT

AIMS: Takotsubo syndrome (TTS) is an acute potentially reversible cardiac syndrome characterized by variable regional myocardial akinesia that cannot be attributed to a culprit coronary artery occlusion. TTS is an important differential diagnosis of acute heart failure where brain natriuretic peptides are elevated. Sacubitril/valsartan is a novel and effective pharmacological agent for the treatment of patients with heart failure. Our aim was to explore whether treatment with sacubitril/valsartan could prevent isoprenaline-induced takotsubo-like phenotype in rats. METHODS AND RESULTS: A total number of 186 Sprague-Dawley male rats were randomized to receive pretreatment with water (CONTROL, n = 62), valsartan (VAL, n = 62), or sacubitril/valsartan (SAC/VAL, n = 62) before receiving isoprenaline for induction of TTS. We recorded heart rate and blood pressure invasively. Cardiac morphology and function were evaluated by high-resolution echocardiography 90 min after the administration of isoprenaline. We documented the survival rate at the time of echocardiography. Compared with the CONTROL group, the SAC/VAL group had less pronounced TTS-like cardiac dysfunction and lower mortality rate, while the VAL group did not differ. Heart rate and blood pressure were not significantly different between the groups. Analysis of cardiac lipids was performed with mass spectrometry. The VAL and SAC/VAL groups had significantly higher levels of lysophosphatidylcholine (LPC), in particular LPC 18:1 and LPC 16:0. CONCLUSIONS: Pretreatment with sacubitril/valsartan but not with valsartan reduces mortality and attenuates isoprenaline-induced apical akinesia in the TTS-like model in rats. Sacubitril/valsartan could be a potential treatment option in patients with TTS in humans.


Subject(s)
Aminobutyrates , Animals , Biphenyl Compounds , Drug Combinations , Humans , Isoproterenol/adverse effects , Male , Rats , Rats, Sprague-Dawley , Valsartan
19.
Am J Physiol Heart Circ Physiol ; 320(5): H2147-H2160, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33797274

ABSTRACT

High levels of microvesicles (MVs), a type of extracellular vesicles, are detected in several pathological conditions. We investigated the connection between coronary flow reserve (CFR), a prognostic clinical parameter that reflects blood flow in the heart, with levels of MVs and their cargo, from plasma of patients with cardiovascular disease. The PROFLOW study consists of 220 patients with prior myocardial infarction and measured CFR with transthoracic echocardiography. The patients were divided into high and low CFR groups. Plasma MVs were captured with acoustic trapping. Platelet- and endothelial-derived MVs were measured with flow cytometry, and vesicle lysates were analyzed with proteomic panels against cardiovascular biomarkers. Flow cytometry was further applied to identify cellular origin of biomarkers. Our data show a negative correlation between MV concentration and CFR values. Platelet and endothelial MV levels were significantly increased in plasma from the low CFR group. CFR negatively correlates with the levels of several proteomic biomarkers, and the low CFR group exhibited higher concentrations of these proteins in MVs. Focused analysis of one of the MV proteins, B cell activating factor (BAFF), revealed platelet and not leukocyte origin and release upon proinflammatory stimulus. Higher levels of MVs carrying an elevated concentration of proatherogenic proteins circulate in plasma in patients with low CFR, a marker of vascular dysfunction, reduced blood flow, and poor prognosis. Our findings demonstrate a potential clinical value of MVs as biomarkers and possible therapeutic targets against endothelial deterioration.NEW & NOTEWORTHY We investigated how microvesicles (MVs) from patients with cardiovascular diseases are related to coronary flow reserve (CFR), a clinical parameter reflecting blood flow in the heart. Our results show a negative relationship between CFR and levels of platelet and endothelial MVs. The pattern of MV-enriched cardiovascular biomarkers differs between patients with high and low CFR. Our findings suggest a potential clinical value of MVs as biomarkers of reduced blood flow and proatherogenic status, additional to CFR.


Subject(s)
Cardiovascular Diseases/blood , Cell-Derived Microparticles/metabolism , Aged , Biomarkers/blood , Endothelial Cells/metabolism , Female , Flow Cytometry , Fractional Flow Reserve, Myocardial , Humans , Intercellular Adhesion Molecule-1/metabolism , Male , Middle Aged , Proteomics
20.
EBioMedicine ; 65: 103264, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33712379

ABSTRACT

BACKGROUND: It is commonly accepted that in obesity free fatty acids (FFA) cause insulin resistance and hyperglycemia, which drives hyperinsulinemia. However, hyperinsulinemia is observed in subjects with normoglycaemia and thus the paradigm above should be reevaluated. METHODS: We describe two studies: MD-Lipolysis, a case control study investigating the mechanisms of obesity-driven insulin resistance by a systemic metabolic analysis, measurements of adipose tissue lipolysis by microdialysis, and adipose tissue genomics; and POEM, a cohort study used for validating differences in circulating metabolites in relation to adiposity and insulin resistance observed in the MD-Lipolysis study. FINDINGS: In insulin-resistant obese with normal glycaemia from the MD-Lipolysis study, hyperinsulinemia was associated with elevated FFA. Lipolysis, assessed by glycerol release per adipose tissue mass or adipocyte surface, was similar between obese and lean individuals. Adipose tissue from obese subjects showed reduced expression of genes mediating catecholamine-driven lipolysis, lipid storage, and increased expression of genes driving hyperplastic growth. In the POEM study, FFA levels were specifically elevated in obese-overweight subjects with normal fasting glucose and high fasting levels of insulin and C-peptide. INTERPRETATION: In obese subjects with normal glycaemia elevated circulating levels of FFA at fasting are the major metabolic derangement candidate driving fasting hyperinsulinemia. Elevated FFA in obese with normal glycaemia were better explained by increased fat mass rather than by adipose tissue insulin resistance. These results support the idea that hyperinsulinemia and insulin resistance may develop as part of a homeostatic adaptive response to increased adiposity and FFA. FUNDING: Swedish-Research-Council (2016-02660); Diabetesfonden (DIA2017-250; DIA2018-384; DIA2020-564); Novo-Nordisk-Foundation (NNF17OC0027458; NNF19OC0057174); Cancerfonden (CAN2017/472; 200840PjF); Swedish-ALF-agreement (2018-74560).


Subject(s)
Fatty Acids, Nonesterified/metabolism , Hyperinsulinism/pathology , Obesity/pathology , Adipose Tissue/metabolism , Case-Control Studies , Cohort Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Fatty Acids, Nonesterified/blood , Female , Gene Expression Regulation , Glycerol/blood , Glycerol/metabolism , Humans , Hyperinsulinism/complications , Insulin/blood , Insulin Resistance , Lipolysis , Male , Middle Aged , Obesity/complications , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...