Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3289, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632231

ABSTRACT

Endowing textiles with perceptual function, similar to human skin, is crucial for the development of next-generation smart wearables. To date, the creation of perceptual textiles capable of sensing potential dangers and accurately pinpointing finger touch remains elusive. In this study, we present the design and fabrication of intelligent perceptual textiles capable of electrically responding to external dangers and precisely detecting human touch, based on conductive silk fibroin-based ionic hydrogel (SIH) fibers. These fibers possess excellent fracture strength (55 MPa), extensibility (530%), stable and good conductivity (0.45 S·m-1) due to oriented structures and ionic incorporation. We fabricated SIH fiber-based protective textiles that can respond to fire, water, and sharp objects, protecting robots from potential injuries. Additionally, we designed perceptual textiles that can specifically pinpoint finger touch, serving as convenient human-machine interfaces. Our work sheds new light on the design of next-generation smart wearables and the reshaping of human-machine interfaces.


Subject(s)
Fibroins , Silk , Humans , Silk/chemistry , Textiles , Electric Conductivity , Fibroins/chemistry , Touch
2.
Microbiome ; 12(1): 48, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454496

ABSTRACT

BACKGROUND: Long-distance transportation, a frequent practice in the cattle industry, stresses calves and results in morbidity, mortality, and growth suppression, leading to welfare concerns and economic losses. Alkaline mineral water (AMW) is an electrolyte additive containing multiple mineral elements and shows stress-mitigating effects on humans and bovines. RESULTS: Here, we monitored the respiratory health status and growth performance of 60 Simmental calves subjected to 30 hours of road transportation using a clinical scoring system. Within the three days of commingling before the transportation and 30 days after the transportation, calves in the AMW group (n = 30) were supplied with AMW, while calves in the Control group (n = 29) were not. On three specific days, namely the day before transportation (day -3), the 30th day (day 30), and the 60th day (day 60) after transportation, sets of venous blood, serum, and nasopharyngeal swab samples were collected from 20 calves (10 from each group) for routine blood testing, whole blood transcriptomic sequencing, serology detection, serum untargeted metabolic sequencing, and 16S rRNA gene sequencing. The field data showed that calves in the AMW group displayed lower rectal temperatures (38.967 ℃ vs. 39.022 ℃; p = 0.004), respiratory scores (0.079 vs. 0.144; p < 0.001), appetite scores (0.024 vs. 0.055; p < 0.001), ocular and ear scores (0.185 vs. 0.338; p < 0.001), nasal discharge scores (0.143 vs. 0.241; p < 0.001), and higher body weight gains (30.870 kg vs. 7.552 kg; p < 0.001). The outcomes of laboratory and high throughput sequencing data revealed that the calves in the AMW group demonstrated higher cellular and humoral immunities, antioxidant capacities, lower inflammatory levels, and intestinal absorption and lipogenesis on days -3 and 60. The nasopharynx 16S rRNA gene microbiome analysis revealed the different composition and structure of the nasopharyngeal microflora in the two groups of calves on day 30. Joint analysis of multi-omics revealed that on days -3 and 30, bile secretion was a shared pathway enriched by differentially expressed genes and metabolites, and there were strong correlations between the differentially expressed metabolites and the main genera in the nasopharynx. CONCLUSIONS: These results suggest that AMW supplementation enhances peripheral immunity, nutrition absorption, and metabolic processes, subsequently affecting the nasopharyngeal microbiota and improving the respiratory health and growth performance of transported calves. This investigation provided a practical approach to mitigate transportation stress and explored its underlying mechanisms, which are beneficial for the development of the livestock industry. Video Abstract.


Subject(s)
Multiomics , Nasopharynx , Animals , Cattle , Antioxidants , Minerals , RNA, Ribosomal, 16S/genetics
3.
Sci Bull (Beijing) ; 68(23): 2973-2981, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37798179

ABSTRACT

Nature-derived silk fibers possess excellent biocompatibility, sustainability, and mechanical properties, yet producing strong and tough silk fibers in a facile and large-scale manner remains a significant challenge. Herein, we report a simple method for preparing strong and tough silk fibers by feeding silkworms rare earth ion-modified diets. The resulting silk fibers exhibit significantly increased tensile strength and toughness, with average values of 0.85 ± 0.07 GPa and 156 ± 13 MJ m-3, respectively, and maximum values of 0.97 ± 0.04 GPa and 188 ± 19 MJ m-3, approaching those of spider dragline silk. Our findings suggest that the incorporation of rare earth ions (La3+ or Eu3+) into the silk fibers contributes to this enhancement. Structure analysis reveals a reduction in content and an improvement in orientation of ß-sheet nanocrystals in silk fibers. X-ray photoelectron spectroscopy analysis confirms the chemical interaction between rare earth ions with ß-sheet nanocrystals. The structural evolution and chemical interactions lead to the simultaneous enhancement in both strength and toughness. This work presents a simple, scalable, and effective strategy for producing ultra-strong and tough silk fibers with potential applications in areas requiring super structural materials, such as personal protection and aerospace.


Subject(s)
Bombyx , Silk , Animals , Silk/chemistry , Bombyx/metabolism , Tensile Strength , Ions/metabolism , Diet
4.
Front Immunol ; 13: 805881, 2022.
Article in English | MEDLINE | ID: mdl-35784364

ABSTRACT

Ketone bodies are crucial intermediate metabolites widely associated with treating metabolic diseases. Accumulating evidence suggests that ketone bodies may act as immunoregulators in humans and animals to attenuate pathological inflammation through multiple strategies. Although the clues are scattered and untrimmed, the elevation of these ketone bodies in the circulation system and tissues induced by ketogenic diets was reported to affect the immunological barriers, an important part of innate immunity. Therefore, beta-hydroxybutyrate, a key ketone body, might also play a vital role in regulating the barrier immune systems. In this review, we retrospected the endogenous ketogenesis in animals and the dual roles of ketone bodies as energy carriers and signal molecules focusing on beta-hydroxybutyrate. In addition, the research regarding the effects of beta-hydroxybutyrate on the function of the immunological barrier, mainly on the microbiota, chemical, and physical barriers of the mucosa, were outlined and discussed. As an inducible endogenous metabolic small molecule, beta-hydroxybutyrate deserves delicate investigations focusing on its immunometabolic efficacy. Comprehending the connection between ketone bodies and the barrier immunological function and its underlining mechanisms may help exploit individualised approaches to treat various mucosa or skin-related diseases.


Subject(s)
Diet, Ketogenic , Ketone Bodies , 3-Hydroxybutyric Acid , Animals , Immunity, Innate , Inflammation
5.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36614042

ABSTRACT

Abnormal glycemia is frequently along with nephritis, whose pathogenesis is unexplicit. Here, we investigated the effects of abnormal glucose on the renal glomerulus epithelial cells by stimulating immortalized bovine renal glomerulus epithelial (MDBK) cells with five different levels of glucose, including low glucose (2.5 mM for 48 h, LG), normal glucose (5 mM for 48 h, NG), high glucose (25 mM for 48 h, HG), increasing glucose (24 h of 2.5 mM glucose followed by 24 h of 25 mM, IG), and reducing glucose (24 h of 25 mM glucose followed by 24 h of 2.5 mM, RG). The results showed that LG and RG treatments had nonsignificant effects (p > 0.05) on the viability of MDBK cells. HG treatment decreased the viabilities of cells (p < 0.01) without triggering an apparent inflammatory response by activating the nox4/ROS/p53/caspase-3-mediated apoptosis pathway. IG treatment decreased the viabilities of cells significantly (p < 0.01) with high levels of pro-inflammatory cytokines IL-1ß and IL-18 in the supernatant (p < 0.05) by triggering the txnip/nlrp3/gsdmd-mediated pyroptosis pathway. These results indicated that the process of glucose increase rather than the constant high glucose was the main cause of abnormal glucose-induced MDBK cell inflammatory death, prompting that the process of glycemia increases might be mainly responsible for the nephritis in diabetic nephropathy, underlining the importance of glycemic control in diabetes patients.


Subject(s)
Diabetic Nephropathies , Nephritis , Humans , Animals , Cattle , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Glucose/metabolism , Diabetic Nephropathies/metabolism , Epithelial Cells/metabolism , Pyroptosis
6.
Sci Rep ; 11(1): 13725, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215807

ABSTRACT

Enterobacteria that produce extended-spectrum ß-lactamase (ESBL) such as Escherichia coli (E. coli) are common in our environment and known to cause serious health implications in humans and animals. ß-lactam antibiotics such as penicillins, cephalosporins and monobactams are the most commonly used anti-bacterials in both humans and animals, however, Gram negative bacteria (such as E. coli) that produces extended-spectrum ß-lactamases (ESBLs) have the ability to hydrolyze most ß-lactams therefore making them resistant to ß-lactam antibiotics. Recent extensive researches on the epidemiology and genetic characteristics of extended-spectrum ß-lactamase (ESBL)-producing E. coli reported the existence of ESBL-producing E. coli in humans, companion animals and poultry. Therefore, this experiment was performed to investigate the prevalence and genetic characteristics of ß-lactamase producing E. coli isolated from beef cattle farms in the Sichuan-Chongqing circle of China. Phenotypic confirmation of ESBL-producing E. coli was performed using the double disk synergy test. Polymerase Chain Reaction (PCR) was used to detect blaCTX-M, blaSHV and blaTEM gene codes, then after, isolates were divided into different phylogenetic groups and multi-locus sequence typing (MLST). The results showed that out of the 222 E. coli strains isolated from the beef cattle, 102 strains showed ESBL phenotypes. The PCR results showed that blaCTX-M was the predominant ESBL gene identified among the E. coli strains with 21 (9.5%) isolates having this gene, followed by blaSHV which was found in 18 (8.1%) isolates. The majority of these ESBL positive isolates were assigned to phylogroup A (19.8%) followed by phylogroup B1 (13.5%). In addition, from the MLST results on ESBL positive isolates (n = 30) we identified 19 STs, ST398 (ST398cplx) and ST7130 which were the prevalent population (20%). In conclusion, the high prevalence of CTX-M, and SHV in the study confirmed its association with E. coli infection; therefore, this calls for health concerns on ESBL-producing E. coli. As far as we know, this is the first comprehensive research report relating to ESBL-producing E. coli incidence in Chinese beef cattle.


Subject(s)
Cattle/microbiology , Escherichia coli/enzymology , beta-Lactamases/genetics , Animals , China , Escherichia coli/genetics , Red Meat/microbiology
7.
Can J Vet Res ; 85(2): 145-150, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33883823

ABSTRACT

Enzootic nasal adenocarcinoma is a contagious respiratory disease in goats that is caused by the enzootic nasal tumor virus 2 (ENTV-2). In order to increase the number of available detection methods for ENTV-2, we developed a SYBR Green real-time polymerase chain reaction (SGrPCR) assay that targets the gag gene of ENTV-2. The low limit of detection of the assay was 3.68 × 101 copies/µL, a hundredfold more sensitive than conventional PCR. The melt curve showed a single sharp melt peak at 83°C, which indicated that there was no non-specific amplification or primer dimer formation. The intra-assay and inter-assay coefficients of variation were 1.58% and 1.82%, respectively. There was no cross-reactivity with closely related goat viruses (i.e., orf virus, peste des petits ruminants virus, goatpox virus, foot-and-mouth disease virus) and endogenous retroviruses. In conclusion, the SGrPCR assay is specific for the gag gene of ENTV-2 and provides a rapid and sensitive approach for detecting ENTV-2 in clinical samples.


L'adénocarcinome nasal enzootique est une maladie respiratoire contagieuse chez les chèvres qui est causé par le virus de la tumeur nasale enzootique 2 (ENTV-2). Afin d'augmenter le nombre de méthodes de détection disponibles pour ENTV-2, nous avons développé un test de réaction en chaîne par polymérase en temps réel SYBR Green (SGrPCR) qui cible le gène gag de ENTV-2. La limite basse de détection du test était de 3,68 × 101 copies/µL, cent fois plus sensible que la PCR conventionnelle. La courbe de fusion montrait un seul pic de fusion net à 83 °C, ce qui indiquait qu'il n'y avait pas d'amplification non spécifique ou de formation de dimère d'amorce. Les coefficients de variation intra-essai et inter-essai étaient respectivement de 1,58 % et 1,82 %. Il n'y avait pas de réactivité croisée avec les virus caprins étroitement apparentés (c'est-à-dire le virus orf, le virus de la peste des petits ruminants, le virus de la variole caprine, le virus de la fièvre aphteuse) et les rétrovirus endogènes. En conclusion, le test SGrPCR est spécifique du gène gag de l'ENTV-2 et fournit une approche rapide et sensible pour la détection d'ENTV-2 dans des échantillons cliniques.(Traduit par Docteur Serge Messier).


Subject(s)
Adenocarcinoma/veterinary , Benzothiazoles/chemistry , Betaretrovirus , Diamines/chemistry , Goat Diseases/virology , Nose Neoplasms/veterinary , Quinolines/chemistry , Retroviridae Infections/veterinary , Tumor Virus Infections/veterinary , Adenocarcinoma/virology , Animals , Goat Diseases/diagnosis , Goats , Nose Neoplasms/virology , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , Retroviridae Infections/virology , Tumor Virus Infections/virology
8.
Front Vet Sci ; 8: 796494, 2021.
Article in English | MEDLINE | ID: mdl-35187139

ABSTRACT

Past studies suggested that during early lactation and the transition period, higher plasma growth hormone (GH) levels in subclinical ketosis (SCK) might involve the initiation of body adipose tissues mobilization, resulting in metabolic disorders in ruminants particularly hyperketonemia. The upregulated GH mRNA expression in adipose tissue may take part in the adipolysis process in SCK-affected cows that paves a way for study further. This study aimed to characterize the plasma levels of GH, ß-hydroxybutyrate acid (BHBA) and non-esterified fatty acid (NEFA) and glucose (GLu) in ketotic cows and healthy control (CON) cows; to measure the liver function test (LFT) indices in ketotic and healthy CON cows, and finally the quantitative real-time PCR (qRT-PCR) assay of candidate genes expressed in adipose tissues of ketotic and healthy CON cows during 0 to 7 week postpartum. Three experiments were conducted. Experiment-1 involved 21 Holstein cows weighing 500-600 kg with 2-5 parities. Results showed that GH, BHBA, and NEFA levels in ketotic cows were significantly higher and the GLu level significantly lower. Pearson's correlation analysis revealed a significant positive correlation of GH with BHBA, NEFA, and GLu in ketotic and healthy CON cows. In experiment-2, dynamic monitoring of LFT indices namely, alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), total protein (TP), albumin (ALB), globulin (GLOB) and albumin/globulin (A/G) were examined. The TBIL, DBIL, and GGT indices were significantly higher in ketotic cows and TP was significantly lower. In experiment-3, mRNA expression levels of GHR and peroxisome-proliferator-activated receptor alpha (PPARα) genes in adipose tissue were significantly upregulated in ketotic cows. However, the mRNA expression of insulin-like growth factor-I (IGF-1), insulin-like growth factor-I receptor (IGF-1R), and sterol regulatory element-binding protein-1c (SREBP-1c) genes in adipose tissue were downregulated in ketotic cows. Our study concluded that during postpartum, higher plasma GH levels in SCK cows might involve the initiation of body adipose tissue mobilization, resulting in hyperketonemia.

9.
Polymers (Basel) ; 11(12)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810164

ABSTRACT

In this study, waste cotton fibers were environmentally reused. First, they were milled into fine powders with particle sizes of around 30 µm and dyed for use as pigments. Dyeing properties of the cellulose powder were explored by determining the dye uptake, K/S value, and bath ratio. Among the various samples, powders with owf (on weight of fabric) of 0% dye (pristine cellulose powder), and 10% and 50% dyed powders were selected; and these powders were characterized by several methods to compare the properties of dyed and undyed cellulose. The surface morphologies of the powders were observed with a scanning electron microscope (SEM). Combining the SEM images with the Brunauer-Emmet-Teller (BET) data, it was found that the smaller the particle size, the larger is the surface area. In addition, the X-ray photoelectron spectroscopy (XPS) results revealed that with increasing dye concentration, the intensity of the C peak reduced, while those of O and S increased. Moreover, the main components of the dyed and undyed cellulose powders were found to be almost the same from the Fourier-transform infrared spectroscopy (FTIR) results. Finally, the dynamic mechanical analysis (DMA) data revealed that the loss modulus was significantly larger than the storage modulus, demonstrating that the material mainly undergoes viscous deformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...