Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(23): e202302525, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36930411

ABSTRACT

Carbon monoxide (CO) is an endogenous signaling molecule with broad therapeutic effects. Here, a multifunctional X-ray-triggered carbon monoxide (CO) and manganese dioxide (MnO2 ) generation nanoplatform based on metal carbonyl and scintillating nanoparticles (SCNPs) is reported. Attributed to the radioluminescent characteristic of SCNPs, UV-responsive Mn2 (CO)10 is not only indirectly activated to release CO by X-ray but can also be degraded into MnO2 . A high dose of CO can be used as a glycolytic inhibitor for tumor suppression; it will also sensitize tumor cells to radiotherapy. Meanwhile MnO2 , as the photolytic byproduct of Mn2 (CO)10 , has both glutathione (GSH) depletion and Fenton-like Mn2+ delivery properties to produce highly toxic hydroxyl radical (⋅OH) in tumors. Thus, this strategy can realize X-ray-activated CO release, GSH depletion, and ⋅OH generation for cascade cancer radiosensitization. Furthermore, X-ray-activated Mn2+ in vivo demonstrates an MRI contrast effect, making it a potential theranostic nanoplatform.


Subject(s)
Nanoparticles , Neoplasms , Humans , Manganese Compounds/pharmacology , Manganese Compounds/therapeutic use , Oxides/pharmacology , Carbon Monoxide/pharmacology , Carbon Monoxide/therapeutic use , X-Rays , Neoplasms/drug therapy , Neoplasms/metabolism , Cell Line, Tumor , Glutathione/metabolism , Hydrogen Peroxide/therapeutic use
2.
Biomater Sci ; 10(13): 3433-3440, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35666242

ABSTRACT

Photocatalytic materials absorb photons ranging from the ultraviolet to near-infrared region to initiate photocatalytic reactions and have broad application prospects in various fields. However, high-energy ionizing radiations are rarely involved in photocatalytic research. In this study, we proposed a high-energy radiation-based photocatalysis method, namely "radiocatalysis", and prepared a TiO2-coated lanthanide pyrosilicate scintillator (LnPS@TiO2) as the radiocatalytic material. The lanthanide pyrosilicate post-radiation scintillators can efficiently convert radiation energy into ultraviolet energy, which can be resonantly transferred to TiO2 to selectively generate high-yield superoxide radicals (). Compared with traditional radiotherapy, this radiocatalytic process can significantly kill cancer cells while achieving long-term DNA damage by inhibiting the DNA self-repair process. Our research expands the energy response range of photocatalysis and is expected to extend radiocatalysis to the tumor treatment field.


Subject(s)
Lanthanoid Series Elements , Neoplasms , DNA , DNA Damage , Humans , Superoxides
3.
ACS Nano ; 15(9): 15381-15394, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34520168

ABSTRACT

Hypoxia is one of the most important factors that limit the effect of radiotherapy, and the abundant H2O2 in tumor tissues will also aggravate hypoxia-induced radiotherapy resistance. Delivering catalase to decompose H2O2 into oxygen is an effective strategy to relieve tumor hypoxia and radiotherapy resistance. However, low stability limits catalase's in vivo application, which is one of the most common limitations for almost all proteins' internal utilization. Here, we develop catalase containing E. coli membrane vesicles (EMs) with excellent protease resistance to relieve tumor hypoxia for a long time. Even treated with 100-fold of protease, EMs showed higher catalase activity than free catalase. After being injected into tumors post 12 h, EMs maintained their hypoxia relief ability while free catalase lost its activity. Our results indicate that EMs might be an excellent catalase delivery for tumor hypoxia relief. Combined with their immune stimulation features, EMs could enhance radiotherapy and induce antitumor immune memory effectively.


Subject(s)
Catalase/administration & dosage , Cytoplasmic Vesicles , Escherichia coli , Neoplasms/therapy , Tumor Hypoxia , Animals , Hydrogen Peroxide , Neoplasms/radiotherapy
4.
Small ; 17(18): e2007734, 2021 05.
Article in English | MEDLINE | ID: mdl-33738929

ABSTRACT

The production of oxygen by photosynthetic microorganisms (PSMs) has recently attracted interest concerning the in vivo treatment of multiple diseases for their photosynthetic oxygen production in vivo, since PSMs have good biological safety. Here, the first evidence that PSMs can be used as a photothermal source to perform biophotothermal therapy (bio-PTT) is provided. In vitro and in vivo experiments proved that PSMs can generate heat for the direct elimination of tumors and release a series of pathogen-associated molecular patterns and adjuvants for immune stimulation under light irradiation. Bio-PTT enabled a local tumor inhibition rate exceeding 90% and an abscopal tumor inhibition rate exceeding 75%. This strategy also produced a stronger antitumor immune memory effect to prevent tumor recurrence. The bio-PTT strategy provides a novel direction for photothermal therapy as it simultaneously produces local and abscopal antitumor effects.


Subject(s)
Hyperthermia, Induced , Neoplasms , Cell Line, Tumor , Humans , Immunity , Immunotherapy , Neoplasms/therapy , Phototherapy
5.
Nanoscale ; 12(13): 7376-7382, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32207476

ABSTRACT

Photooxidation provides a promising strategy for photocatalysis, photodynamic therapy, and environmental protection. Unfortunately, most organic photosensitizers possess weak hydrophilicity and a π-π conjugated structure, leading to singlet oxygen self-quenching, poor loadability and therefore unsatisfactory photooxidation efficiency. Thus, dispersion of these photosensitizers within a two-dimensional porous covalent organic framework has become a feasible strategy to hinder their self-aggregation and augment their loading capacity. Here, we report a phthalocyanine-based photosensitizer loaded on covalent organic framework nanosheets. This nano-photosensitizer exhibits highly dispersed organic fluorescent phthalocyanines and a high loading capacity. The fabricated nanosheets restrict self-aggregation of photosensitizer molecules and enhance the photooxidation activity, which may offer a new paradigm for photooxidation and its multiple applications.

6.
Biomater Sci ; 7(1): 168-177, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30420976

ABSTRACT

Abraxane® (Abx), an FDA approved albumin-bound paclitaxel nano-formulation, is one of the most common chemical drugs for the treatment of metastatic triple-negative breast cancer (mTNBC). However, acquired resistance and metastasis are critical factors that limit the treatment of mTNBC by Abx. In particular, both the tumor hypoxic microenvironment and the increase in hydrogen peroxide (H2O2) levels via paclitaxel stimulation primarily mediate the resistance to chemotherapy, where multiple drug resistance proteins such as P-gp and tumor invasion-related cytokines such as VEGF are continuously activated to pump out chemical drugs and aggravate tumor metastasis, respectively. Therefore, it is of great importance to combine tumor oxygenation with commercial chemical drugs for overcoming the acquired resistance and metastasis. In this study, a facile method was developed to deposit manganese dioxide (MnO2) onto the surface of Abraxane® (Abx) to form MnO2-modified Abx (M-Abx). The modification process did not change the critical characteristics of the parent Abx, which might have great potential for application in clinics for the treatment of mTNBC. Tumor oxygenation mediated by M-Abx specifically occurs within the H2O2-overexpressed tumor microenvironment, and significantly downregulates the content of tumor progression-related proteins, such as HIF-1α, P-gp, and VEGF. Ultimately, M-Abx treatment results in about a 2-fold increase in inhibition efficiency of tumor growth in both primary and metastatic tumors compared with traditional Abx therapy. Therefore, oxygen-rich chemotherapy was realized to efficiently sensitize paclitaxel, relieve acquired resistance and inhibit tumor metastasis.


Subject(s)
Albumin-Bound Paclitaxel/analogs & derivatives , Albumin-Bound Paclitaxel/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Manganese Compounds/chemistry , Manganese Compounds/therapeutic use , Oxides/chemistry , Oxides/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Hydrogen Peroxide/metabolism , Mice , Neoplasm Micrometastasis/prevention & control , Oxygen/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/drug effects
7.
ACS Nano ; 12(8): 8308-8322, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30102510

ABSTRACT

Hypoxia, and hypoxia inducible factor-1 (HIF-1), can induce tumor resistance to radiation therapy. To overcome hypoxia-induced radiation resistance, recent studies have described nanosystems to improve tumor oxygenation for immobilizing DNA damage and simultaneously initiate oxygen-dependent HIF-1α degradation. However, HIF-1α degradation is incomplete during tumor oxygenation treatment alone. Therefore, tumor oxygenation combined with residual HIF-1 functional inhibition is crucial to optimizing therapeutic outcomes of radiotherapy. Here, a reactive oxygen species (ROS) responsive nanoplatform is reported to successfully add up tumor oxygenation and HIF-1 functional inhibition. This ROS responsive nanoplatform, based on manganese dioxide (MnO2) nanoparticles, delivers the HIF-1 inhibitor acriflavine and other hydrophilic cationic drugs to tumor tissues. After reacting with overexpressed hydrogen peroxide (H2O2) within tumor tissues, Mn2+ and oxygen molecules are released for magnetic resonance imaging and tumor oxygenation, respectively. Cooperating with the HIF-1 functional inhibition, the expression of tumor invasion-related signaling molecules (VEGF, MMP-9) is obviously decreased to reduce the risk of metastasis. Furthermore, the nanoplatform could relieve T-cell exhaustion via downregulation of PD-L1, whose effects are similar to the checkpoint inhibitor PD-L1 antibody, and subsequently activates tumor-specific immune responses against abscopal tumors. These therapeutic benefits including increased X-ray-induced damage, downregulated resistance, and T-cell exhaustion related proteins expression achieved synergistically the optimal inhibition of tumor growth. Overall, this designed ROS responsive nanoplatform is of great potential in the sensitization of radiation for combating primary and metastatic tumors.


Subject(s)
Hypoxia-Inducible Factor 1/antagonists & inhibitors , Nanoparticles/metabolism , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Animals , Cell Line , Humans , Hypoxia-Inducible Factor 1/metabolism , Mice , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/therapy , X-Rays
8.
Mol Pharm ; 15(2): 447-457, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29261319

ABSTRACT

Tumor microenvironment with hypoxia and excess hydrogen peroxide (H2O2) tremendously limits the effect of chemoradiation therapy of colorectal cancer. For the first time, we developed a facile method to deposit manganese dioxide (MnO2) on the surface of albumin bound paclitaxel nanoparticles (ANPs-PTX) to obtain MnO2-functioned ANPs-PTX (MANPs-PTX). In the tumor microenvironment, MANPs-PTX could consume excess hydrogen peroxide (H2O2) to produce abundant oxygen for tumor oxygenation and improve chemoradiation therapy. Meanwhile, the released Mn2+ from MANPs-PTX had excellent T1 magnetic resonance imaging (MRI) performances for tumor detection. Notably, the obtained MANPs-PTX would be a promising theranostic agent and have potential clinical application prospects.


Subject(s)
Albumin-Bound Paclitaxel/administration & dosage , Antineoplastic Agents/administration & dosage , Colorectal Neoplasms/therapy , Drug Compounding/methods , Manganese Compounds/chemistry , Oxides/chemistry , Albumin-Bound Paclitaxel/chemistry , Animals , Antineoplastic Agents/chemistry , Cell Hypoxia/drug effects , Cell Line, Tumor/transplantation , Chemoradiotherapy/methods , Colorectal Neoplasms/diagnostic imaging , Disease Models, Animal , Humans , Hydrogen Peroxide/metabolism , Male , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Treatment Outcome , Tumor Burden/drug effects , Tumor Burden/radiation effects , Tumor Microenvironment/drug effects
9.
PLoS One ; 9(8): e103270, 2014.
Article in English | MEDLINE | ID: mdl-25084155

ABSTRACT

In an attempt to find the correlation of aberrant expression of long intergenic noncoding RNAs (lincRNAs) with cancer, twenty-five samples of breast cancer tissue and respective adjacent normal tissue were studied for the expression of lincRNAs by RNA-seq. Among the 538 lincRNAs studied, 124 lincRNAs were exclusively expressed in cancer adjacent tissues and 62 lincRNAs were exclusively expressed in the cancer tissues. Furthermore, the expression of 134 lincRNAs was higher while 272 lower in breast cancer tissue compared with adjacent tissue. The expression of four selected lincRNAs (BC2, BC4, BC5, and BC8) was validated by semi-quantitative and real-time PCR. It was revealed that expression of lincRNA-BC5 was positively correlated with patients' age, pathological stage, and progesterone receptor concentration, while lincRNA-BC8 was negatively correlated with progesterone receptor expression. Higher expression of lincRNA-BC4 was seen in advanced breast cancer grade. LincRNA-BC2 showed no specific changes in the pathological features studied. Interactions between selected lincRNAs and breast cancer associated proteins were highly suggested by RPIseq based on the specific secondary structure. The results demonstrated that this group of lincRNAs was aberrantly expressed in breast cancer. They might play important roles in the function of oncogenes or tumor suppressors affecting the development and progression of breast cancer.


Subject(s)
Breast Neoplasms/genetics , RNA, Long Noncoding/genetics , Breast Neoplasms/pathology , Chromosome Mapping , Computational Biology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing , Humans , Nucleic Acid Conformation , Protein Binding , Reproducibility of Results , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...