Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(4): 114113, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625792

ABSTRACT

The continuous regeneration of spermatogonial stem cells (SSCs) underpins spermatogenesis and lifelong male fertility, but the developmental origins of the SSC pool remain unclear. Here, we document that hnRNPU is essential for establishing the SSC pool. In male mice, conditional loss of hnRNPU in prospermatogonia (ProSG) arrests spermatogenesis and results in sterility. hnRNPU-deficient ProSG fails to differentiate and migrate to the basement membrane to establish SSC pool in infancy. Moreover, hnRNPU deletion leads to the accumulation of ProSG and disrupts the process of T1-ProSG to T2-ProSG transition. Single-cell transcriptional analyses reveal that germ cells are in a mitotically quiescent state and lose their unique identity upon hnRNPU depletion. We further show that hnRNPU could bind to Vrk1, Slx4, and Dazl transcripts that have been identified to suffer aberrant alternative splicing in hnRNPU-deficient testes. These observations offer important insights into SSC pool establishment and may have translational implications for male fertility.


Subject(s)
Spermatogenesis , Spermatogonia , Animals , Male , Mice , Adult Germline Stem Cells/metabolism , Alternative Splicing/genetics , Cell Differentiation , Spermatogenesis/genetics , Spermatogonia/metabolism , Spermatogonia/cytology , Stem Cells/metabolism , Stem Cells/cytology , Testis/metabolism , Testis/cytology , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism
2.
EMBO Rep ; 25(4): 2045-2070, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454159

ABSTRACT

Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly. BAG5-deficient male mice show abnormal assembly of HTCA, leading to ASS and male infertility, phenocopying SPATA6-deficient mice. In vivo and in vitro experiments demonstrate that SPATA6, cargo transport-related myosin proteins (MYO5A and MYL6) and dynein proteins (DYNLT1, DCTN1, and DNAL1) are misfolded upon BAG5 depletion. Mechanistically, we find that BAG5 forms a complex with HSPA8 and promotes the folding of SPATA6 by enhancing HSPA8's affinity for substrate proteins. Collectively, our findings reveal a novel protein-regulated network in sperm formation in which BAG5 governs the assembly of the HTCA by activating the protein-folding function of HSPA8.


Subject(s)
Cytoskeletal Proteins , Infertility, Male , Teratozoospermia , Thiazoles , Animals , Humans , Male , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Dyneins/metabolism , HSC70 Heat-Shock Proteins/genetics , HSC70 Heat-Shock Proteins/metabolism , Infertility, Male/genetics , Infertility, Male/pathology , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Folding , Semen/metabolism , Sperm Head/physiology , Spermatogenesis/genetics , Spermatozoa/metabolism , Teratozoospermia/metabolism , Teratozoospermia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL