Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2400962, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637999

ABSTRACT

Tin-lead (Sn-Pb) mixed perovskite with a narrow bandgap is an ideal candidate for single-junction solar cells approaching the Shockley-Queisser limit. However, due to the easy oxidation of Sn2+, the efficiency and stability of Sn-Pb mixed perovskite solar cells (PSCs) still lag far behind that of Pb-based solar cells. Herein, highly efficient and stable FA0.5MA0.5Pb0.5Sn0.5I0.47Br0.03 compositional PSCs are achieved by introducing an appropriate amount of multifunctional Tin (II) oxalate (SnC2O4). SnC2O4 with compensative Sn2+ and reductive oxalate group C2O4 2- effectively passivates the cation and anion defects simultaneously, thereby leading to more n-type perovskite films. Benefitting from the energy level alignment and the suppression of bulk nonradiative recombination, the Sn-Pb mixed perovskite solar cell treated with SnC2O4 achieves a power conversion efficiency of 21.43%. More importantly, chemically reductive C2O4 2- effectively suppresses the notorious oxidation of Sn2+, leading to significant enhancement in stability. Particularly, it dramatically improves light stability.

2.
Nanotechnology ; 34(44)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37527642

ABSTRACT

Recently, narrow bandgap tin-lead mixed perovskite solar cells (PSCs) have become a research hotspot because they can be applied in tandem cells to break the Shockley-Queisser radiative limit of the single junction PSCs. However, the introduction of tin, on the one hand, makes the crystal quality of perovskite thin film worse, leading to the increase of film defects; on the other hand, the easy oxidation of divalent tin also leads to the increase of defect states, which seriously affects the photoelectric conversion efficiency of tin-lead cell devices. Good crystallization and low defect density of perovskite layer are very important to ensure good light absorption and photogenerated carrier generation and transport. Here, we adjust the crystallization of tin-lead perovskite films by a Lewis base-urea (CO(NH2)2), which significantly increases the grain size and improves the film morphology. At the same time, because of the Lewis base property of urea, the uncoordinated Pb2+and Sn2+defects of Lewis acids in the tin-lead films are effectively passivated, and the occurrence of non-radiative recombination in the films is reduced. Under the dual effects of improving crystallization and passivating defects, the photoelectric performance of tin-lead perovskite solar cell devices is significantly improved to 18.1% compared with the original device of 15.4%.

3.
J Colloid Interface Sci ; 559: 29-38, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31606524

ABSTRACT

Organic-inorganic halide perovskites solar cells have garnered increasing attention in recent years due to the dramatic rise in power conversion efficiencies (PCEs). In perovskite solar cells (PSCs), selecting appropriate hole transport materials to insert between perovskite layer and electrodes can improve Schottky contact, facilitate the hole transport, therefore reduce charge recombination, and therefore improve cell performance. Doping of metal cation is an effective means to regulate energy level structure and change its conductivity. In this study, we novelly introduce the Pb2+ doped NiOx as the hole transport materials to decrease the energy loss between NiOx and the perovskite layer, which improves open-circuit voltage (Voc) of the PSCs. In order to improve the conductivity of the NiOx film, the Li+ co-doping is introduced. We introduce Pb and Li co-doping strategy to match the work function of doped NiOx with perovskite valence band energy level, and increase the conductivity of NiOx for high-efficiency inverted planar PSCs. The Pb and Li co-doped NiOx devices exhibit efficient hole extraction and enhanced conductivity, which improve the performance of inverted planar PSCs to 17.02% compared with 15.40% of the undoped device.

4.
ACS Appl Mater Interfaces ; 11(41): 37796-37803, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31550130

ABSTRACT

Efficient charge transport is especially important for achieving high performance of perovskite solar cells (PSCs). Here, molecularly designed graphite-nitrogen doped graphene quantum dots (GN-GQDs) act as a functional semiconductor additive in perovskite film. GN-GQDs with abundant N active sites participate in the crystallization of perovskite film and effectively passivate the grain boundary (GB) trap states by Lewis base/acid interaction. Moreover, the semiconductive GN-GQDs at GBs exhibit matched energy structure with the perovskite, which facilitate the charge transport at GBs. GN-GQDs also show n-type dopant property to upshift the Fermi energy level of perovskite films. It largely improves the charge transport in PSCs and reduces the interface recombination at the same time. Profiting from these advantages, inverted planar PSCs with NiO/perovskite/PCBM/BCP structure achieves high efficiency of 19.8% with no hysteresis phenomenon. GN-GQDs modified PSCs also show high stability even without encapsulation, benefiting from the protected GBs and more hydrophobic surface of the modified film. This work highlights a judicious design method of GQDs additive to satisfy efficient and stable PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...