Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 23(16): e202200250, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35676240

ABSTRACT

Triple-negative breast cancer (TNBC) is a serious health issue for women worldwide and there is still no suitable treatment option. AA005, a structurally simplified mimic of natural Annonaceous acetogenins, presents outstanding properties with impressive cytotoxicity and cell-type selective actions. The present study was aimed at evaluating the potential of AA005 as a therapeutic agent for TNBC. AA005 potently inhibited the growth of TNBC cells at 50 nM level. Inspired by the finding of the phosphatase and tensin homologue (PTEN) tumor suppressor, the effect of AA005 on aerobic glycolysis was investigated in TNBC MDA-MB-468 cells. A short-term AA005 exposure markedly suppressed mitochondrial function in MDA-MB-468 cells, thus activating the aerobic glycolysis to lessen the risk of decreased ATP generation in mitochondria. Prolonging the incubation time of AA005 clearly weakened the aerobic glycolysis in the cells. This was in part attributed to the PI3K-AKT pathway inactivation and subsequent declined glucose uptake. As a consequence, the energy supply was completely cut from the two major energy-producing pathways. Further experiments showed that AA005 resulted in irreversible damage on cell activity including cell cycle and growth, inducing mitochondrial oxidative stress and ultimately leading to cell death. In addition, the in vivo therapeutic efficacy of AA005 was proved on 4T1 xenograft tumor mice model. Our data demonstrate that AA005 exhibited a great potential for future clinical applications in TNBC therapy.


Subject(s)
Triple Negative Breast Neoplasms , Acetogenins/pharmacology , Acetogenins/therapeutic use , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Energy Metabolism , Fatty Alcohols , Female , Humans , Lactones , Mice , Phosphatidylinositol 3-Kinases/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism
2.
Proc Natl Acad Sci U S A ; 112(44): 13627-32, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26487685

ABSTRACT

Inheritance of the callipyge phenotype in sheep is an example of polar overdominance inheritance, an unusual mode of inheritance. To investigate the underlying molecular mechanism, we profiled the expression of the genes located in the Delta-like 1 homolog (Dlk1)-type III iodothyronine deiodinase (Dio3) imprinting region in mice. We found that the transcripts of the microRNA (miR) 379/miR-544 cluster were highly expressed in neonatal muscle and paralleled the expression of the Dlk1. We then determined the in vivo role of the miR-379/miR-544 cluster by establishing a mouse line in which the cluster was ablated. The maternal heterozygotes of young mutant mice displayed a hypertrophic tibialis anterior muscle, extensor digitorum longus muscle, gastrocnemius muscle, and gluteus maximus muscle and elevated expression of the DLK1 protein. Reduced expression of DLK1 was mediated by miR-329, a member of this cluster. Our results suggest that maternal expression of the imprinted miR-379/miR-544 cluster regulates paternal expression of the Dlk1 gene in mice. We therefore propose a miR-based molecular working model for polar overdominance inheritance.


Subject(s)
Genomic Imprinting , Intercellular Signaling Peptides and Proteins/genetics , MicroRNAs/genetics , Animals , Calcium-Binding Proteins , Female , Mice , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL
...