Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Mol Cell Biol ; 20(1): 21, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253080

ABSTRACT

BACKGROUND: To-date, no claim regarding finding a consensus sequon for O-glycosylation has been made. Thus, predicting the likelihood of O-glycosylation with sequence and structural information using classical regression analysis is quite difficult. In particular, if a binary response is used to distinguish between O-glycosylated and non-O-glycosylated sequences, an appropriate set of non-O-glycosylatable sequences is hard to find. RESULTS: Three sequences from similar post-translational modifications (PTMs) of proteins occurring at, or very near, the S/T-site are analyzed: N-glycosylation, O-mucin type (O-GalNAc) glycosylation, and phosphorylation. Results found include: 1) The consensus composite sequon for O-glycosylation is: ~(W-S/T-W), where "~" denotes the "not" operator. 2) The consensus sequon for phosphorylation is ~(W-S/T/Y/H-W); although W-S/T/Y/H-W is not an absolute inhibitor of phosphorylation. 3) For linear probability model (LPM) estimation, N-glycosylated sequences are good approximations to non-O-glycosylatable sequences; although N - ~P - S/T is not an absolute inhibitor of O-glycosylation. 4) The selective positioning of an amino acid along the sequence, differentiates the PTMs of proteins. 5) Some N-glycosylated sequences are also phosphorylated at the S/T-site in the N - ~P - S/T sequon. 6) ASA values for N-glycosylated sequences are stochastically larger than those for O-GlcNAc glycosylated sequences. 7) Structural attributes (beta turn II, II´, helix, beta bridges, beta hairpin, and the phi angle) are significant LPM predictors of O-GlcNAc glycosylation. The LPM with sequence and structural data as explanatory variables yields a Kolmogorov-Smirnov (KS) statistic of 99%. 8) With only sequence data, the KS statistic erodes to 80%, and 21% of out-of-sample O-GlcNAc glycosylated sequences are mispredicted as not being glycosylated. The 95% confidence interval around this mispredictions rate is 16% to 26%. CONCLUSIONS: The data indicates the existence of a consensus sequon for O-glycosylation; and underscores the germaneness of structural information for predicting the likelihood of O-glycosylation.


Subject(s)
Consensus Sequence , Models, Molecular , Protein Processing, Post-Translational , Proteins/metabolism , Amino Acid Sequence , Amino Acids/chemistry , Analysis of Variance , Databases, Protein , Glycosylation , Humans , Linear Models , Logistic Models , Phosphorylation , Probability , Statistics, Nonparametric
2.
BMC Struct Biol ; 13: 6, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23617634

ABSTRACT

BACKGROUND: The post-genomic era poses several challenges. The biggest is the identification of biochemical function for protein sequences and structures resulting from genomic initiatives. Most sequences lack a characterized function and are annotated as hypothetical or uncharacterized. While homology-based methods are useful, and work well for sequences with sequence identities above 50%, they fail for sequences in the twilight zone (<30%) of sequence identity. For cases where sequence methods fail, structural approaches are often used, based on the premise that structure preserves function for longer evolutionary time-frames than sequence alone. It is now clear that no single method can be used successfully for functional inference. Given the growing need for functional assignments, we describe here a systematic new approach, designated ligand-centric, which is primarily based on analysis of ligand-bound/unbound structures in the PDB. Results of applying our approach to S-adenosyl-L-methionine (SAM) binding proteins are presented. RESULTS: Our analysis included 1,224 structures that belong to 172 unique families of the Protein Information Resource Superfamily system. Our ligand-centric approach was divided into four levels: residue, protein/domain, ligand, and family levels. The residue level included the identification of conserved binding site residues based on structure-guided sequence alignments of representative members of a family, and the identification of conserved structural motifs. The protein/domain level included structural classification of proteins, Pfam domains, domain architectures, and protein topologies. The ligand level included ligand conformations, ribose sugar puckering, and the identification of conserved ligand-atom interactions. The family level included phylogenetic analysis. CONCLUSION: We found that SAM bound to a total of 18 different fold types (I-XVIII). We identified 4 new fold types and 11 additional topological arrangements of strands within the well-studied Rossmann fold Methyltransferases (MTases). This extends the existing structural classification of SAM binding proteins. A striking correlation between fold type and the conformation of the bound SAM (classified as types) was found across the 18 fold types. Several site-specific rules were created for the assignment of functional residues to families and proteins that do not have a bound SAM or a solved structure.


Subject(s)
Ligands , Proteins/metabolism , S-Adenosylmethionine/metabolism , Amino Acid Motifs , Binding Sites , Databases, Protein , Methyltransferases/chemistry , Methyltransferases/metabolism , Protein Binding , Protein Folding , Protein Structure, Tertiary , Proteins/chemistry , S-Adenosylmethionine/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL