Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38612433

ABSTRACT

Curcumin is a polyphenolic molecule derived from the rhizoma of Curcuma longa L. This compound has been used for centuries due to its anti-inflammatory, antioxidant, and antimicrobial properties. These make it ideal for preventing and treating skin inflammation, premature skin ageing, psoriasis, and acne. Additionally, it exhibits antiviral, antimutagenic, and antifungal effects. Curcumin provides protection against skin damage caused by prolonged exposure to UVB radiation. It reduces wound healing times and improves collagen deposition. Moreover, it increases fibroblast and vascular density in wounds. This review summarizes the available information on the therapeutic effect of curcumin in treating skin diseases. The results suggest that curcumin may be an inexpensive, well-tolerated, and effective agent for treating skin diseases. However, larger clinical trials are needed to confirm these observations due to limitations in its in vivo use, such as low bioavailability after oral administration and metabolism.


Subject(s)
Aging, Premature , Curcumin , Dermatitis , Psoriasis , Skin Diseases , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , Skin Diseases/drug therapy , Skin
2.
Sensors (Basel) ; 24(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38610398

ABSTRACT

This study was focused on the analysis of the emission of volatile compounds as an indicator of changes in the quality degradation of corn groats with 14% and 17% moisture content (wet basis) using an electronic nose (Agrinose) at changing vertical pressure values. The corn groats were used in this study in an unconsolidated state of 0 kPa (the upper free layer of bulk material in the silo) and under a consolidation pressure of 40 kPa (approximately 3 m from the upper layer towards the bottom of the silo) and 80 kPa (approximately 6 m from the upper layer towards the bottom of the silo). The consolidation pressures corresponded to the vertical pressures acting on the layers of the bulk material bed in medium-slender and low silos. Chromatographic determinations of volatile organic compounds were performed as reference tests. The investigations confirmed the correlation of the electronic nose response with the quality degradation of the groats as a function of storage time. An important conclusion supported by the research results is that, based on the determined levels of intensity of volatile compound emission, the electronic nose is able to distinguish the individual layers of the bulk material bed undergoing different degrees of quality degradation.

3.
BMC Plant Biol ; 23(1): 522, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891469

ABSTRACT

AIMS: Salinity adversely affects okra [Abelmoschus esculentus (L.) Moench] plants by inducing osmotic and oxidative stresses. This study was designed to enhance salinity-induced osmotic and oxidative stress tolerance in okra plants by applying organic amendments. METHODS: The effects of different organic amendments (municipal solid waste compost, farmyard manure (FYM) and press mud) on osmotic potential, water use efficiency, activities of antioxidant enzymes, total soluble sugar, total soluble proline, total soluble protein and malondialdehyde (MDA) contents of okra plants grown under saline conditions (50 mM sodium chloride) were evaluated in a pot experiment. The organic amendments were applied each at the rate of 5% and 10% per pot or in various combinations (compost + FYM, FYM + press mud and compost + press mud each at the rate of 2.5% and 5% per pot). RESULTS: As compared to control, high total soluble sugar (60.41), total soluble proline (33.88%) and MDA (51%) contents and increased activities of antioxidant enzymes [superoxide dismutase (83.54%), catalase (78.61%), peroxidase (53.57%] in salinity-stressed okra plants, were indicative of oxidative stress. Salinity significantly reduced the osmotic potential (41.78%) and water use efficiency (4.75%) of okra plants compared to control. Under saline conditions, 5% (farmyard manure + press mud) was the most effective treatment, which significantly improved osmotic potential (27.05%), total soluble sugar (4.20%), total soluble protein (73.62%) and total soluble proline (23.20%) contents and superoxide dismutase activity (32.41%), compared to saline soil. Application of 2.5% (FYM + press mud), 5% press mud, and 10% compost significantly reduced MDA content (27%) and improved activities of catalase (38.64%) and peroxidase (48.29%), respectively, compared to saline soil, thus facilitated to alleviate oxidative stress in okra plants. CONCLUSIONS: Using organic amendments (municipal solid waste compost, farmyard manure and press mud) was a cost-effective approach to improve salinity-induced osmotic and oxidative stress tolerance in okra plants.


Subject(s)
Abelmoschus , Antioxidants , Catalase/metabolism , Antioxidants/metabolism , Salinity , Manure , Solid Waste , Oxidative Stress , Soil , Peroxidases/metabolism , Peroxidase/metabolism , Superoxide Dismutase/metabolism , Proline/metabolism , Water/metabolism , Sugars/metabolism
4.
Sci Rep ; 13(1): 15191, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709782

ABSTRACT

Avena sativa L. a cereal crop that is badly affected by several abiotic and biotic stresses. In the current study, silicon nanoparticles are used to mitigate the harmful effects of root rot disease caused by Rhizoctonia solani Kuhn on the growth of A. sativa. In vitro (Petri plates) and in vivo (pots experiment) were performed to measure the various physiological and biochemical parameters i.e. osmotic potential, chlorophyll, proline content, growth parameters, sugar, fresh and dry weight, and disease index. Results revealed that physiological and biochemical parameters were reduced under fungal stress with silicon nanoparticles treatment as compared to the control group. Si nanoparticles helped to alleviate the negative effects caused by fungus i.e. germination percentage upto 80%, germination rate 4 n/d, radical and plumule length was 4.02 and 5.46, dry weight 0.08 g, and relative water content was (50.3%) increased. Fungus + Si treatment showed the maximum protein content, i.e. 1.2 µg/g as compared to Fungus (0.3 µg/g) treated group. The DI was maximum (78.82%) when the fungus directly attacked the target plant and DI reduced (44.2%) when the fungus was treated with Si nanoparticles. Thus, silicon nanoparticles were potentially effective against the stress of R. solani and also used to analyze the plant resistance against fungal diseases. These particles can use as silicon fertilizers, but further studies on their efficacy under field conditions and improvement in their synthesis are still needed.


Subject(s)
Avena , Silicon , Silicon/pharmacology , Stress, Physiological
5.
Materials (Basel) ; 16(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37109902

ABSTRACT

The aim of this study was to determine the emission of organic volatile compounds from maize grain as a function of granularity and packing density of bulk material in conditions imitating processes occurring in silos. The study was carried out with the use of a gas chromatograph and an electronic nose, which was designed and constructed at the Institute of Agrophysics of PAS and has a matrix of eight MOS (metal oxide semiconductor) sensors. A 20-L volume of maize grain was consolidated in the INSTRON testing machine with pressures of 40 and 80 kPa. The control samples were not compacted, and the maize bed had bulk density. The analyses were carried out at a moisture content of 14% and 17% (w.b.-wet basis). The measurement system facilitated quantitative and qualitative analyses of volatile organic compounds and the intensity of their emission during 30-day storage. The study determined the profile of volatile compounds as a function of storage time and the grain bed consolidation level. The research results indicated the degree of grain degradation induced by the storage time. The highest emission of volatile compounds was recorded on the first four days, which indicated a dynamic nature of maize quality degradation. This was confirmed by the measurements performed with electrochemical sensors. In turn, the intensity of the volatile compound emission decreased in the next stage of the experiments, which showed a decline in the quality degradation dynamics. The sensor responses to the emission intensity decreased significantly at this stage. The electronic nose data on the emission of VOCs (volatile organic compounds) as well as grain moisture and bulk volume can be helpful for the determination of the quality of stored material and its suitability for consumption.

6.
PLoS One ; 18(4): e0284612, 2023.
Article in English | MEDLINE | ID: mdl-37115737

ABSTRACT

The activities of alpha-amylase, beta-amylase, sucrose synthase, and invertase enzymes are under the influence of storage conditions and can affect the structure of starch, as well as the sugar content of potatoes, hence altering their quality. Storage in a warehouse is one of the most common and effective methods of storage to maintain the quality of potatoes after their harvest, while preserving their freshness and sweetness. Smart monitoring and evaluation of the quality of potatoes during the storage period could be an effective approach to improve their freshness. This study is aimed at assessing the changes in the potato quality by an electronic nose (e-nose) in terms of the sugar and carbohydrate contents. Three potato cultivars (Agria, Santé, and Sprite) were analyzed and their quality variations were separately assessed. Quality parameters (i.e. sugar and carbohydrate contents) were evaluated in six 15-day periods. The e-nose data were analyzed by means of chemometric methods, including principal component analysis (PCA), linear data analysis (LDA), support vector machine (SVM), and artificial neural network (ANN). Quadratic discriminant analysis (QDA) and multivariate discrimination analysis (MDA) offer the highest accuracy and sensitivity in the classification of data. The accuracy of all methods was higher than 90%. These results could be applied to present a new approach for the assessment of the quality of stored potatoes.


Subject(s)
Solanum tuberosum , Solanum tuberosum/chemistry , Electronic Nose , Carbohydrates , Sugars , Machine Learning
7.
Molecules ; 28(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36838694

ABSTRACT

The phenol content of sorghum is a unique feature among all cereal grains; hence this fact merits the special attention of scientists. It should be remembered that before polyphenols can be used in the body, they are modified within the digestive tract. In order to obtain more accurate data on the level and activity of tested ingredients after ingestion and digestion in the in vivo digestive tract, in vitro simulated digestion may be used. Thus, the aim of this study was to determine the content of polyphenols, flavonoids, and individual phenolic acids, as well as the antiradical properties, of sorghum and sorghum-enriched pasta before and after in vitro simulated gastrointestinal digestion. We observed that the total content of polyphenols decreased after gastric digestion of sorghum, and slightly increased after duodenal digestion. Moreover, the flavonoid content decreased after the first stage of digestion, while antioxidant properties increased after the first stage of digestion and slightly decreased after the second stage. The digestion of polyphenolics in sorghum is completely different to that in pasta-both in varieties with, and without, the addition of sorghum. For pasta, the content of total polyphenols and flavonoids, and free radical scavenging properties, decrease after each stage of digestion.


Subject(s)
Antioxidants , Sorghum , Edible Grain , Polyphenols , Flavonoids , Triticum , Digestion
8.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838822

ABSTRACT

The purpose of this study was to determine the effect of the addition of fresh kale and processing conditions on extruded pellet antioxidant activity and selected physicochemical properties. The results of the applied DPPH, FRAP, and TPC methods indicated that, for both 60 and 100 rpm screw speeds, snack pellet antioxidant activity and phenolic content were strongly linked to the fresh kale content, and these properties increased with the addition of this plant. The amount of fresh kale and the applied processing variables (extruder screw speed and the moisture content of the raw material blends) were also found to significantly affect the water absorption index, water solubility index, fat absorption index, fatty acid profile, and basic chemical composition of the obtained extrudates. The sample with the highest phenolic content (72.8 µg GAE/g d.w.), the most advantageous chemical composition (protein, ash, fat, carbohydrates, and fiber content), and high antioxidant properties was produced at a fresh kale content of 30%, a 36% moisture content, and a 100 rpm screw speed. The following phenolic acids were identified in this sample: protocatechuic, 4-OH-benzoic, vanillic, syringic, salicylic, caffeic, coumaric, ferulic, and sinapic. Sinapic acid was the prevailing phenolic acid.


Subject(s)
Brassica , Brassica/chemistry , Antioxidants/analysis , Snacks , Phenols/analysis , Water
9.
Animals (Basel) ; 13(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36830400

ABSTRACT

Pesticides impair honeybee health in many ways. Imidacloprid (IMD) is a pesticide used worldwide. No information exists on how IMD impact the bees' body bioelement balance, which is essential for bee health. We hypothesized that IMD disturbs this balance and fed the bees (in field conditions) with diets containing 0 ppb (control), 5 ppb (sublethal considered field-relevant), and 200 ppb (adverse) doses of IMD. IMD severely reduced the levels of K, Na, Ca, and Mg (electrolytic) and of Fe, Mo, Mn, Co, Cu, Ni, Se, and Zn, while those of Sn, V, and Cr (enzymatic) were increased. Levels of P, S, Ti, Al, Li, and Sr were also decreased, while only the B content (physiologically essential) was increased. The increase in Tl, Pb, and As levels (toxic) was alarming. Generally, IMD, even in sublethal doses, unexpectedly led to severe bioelement malnutrition in 69% of bioelements and to a stoichiometric mismatch in the remaining ones. This points to the IMD-dependent bioelement disturbance as another, yet unaccounted for, essential metabolic element which can interfere with apian health. Consequently, there is a need for developing methods of bioelement supplementation of the honey bee diet for better preventing bee colony decline and protecting apian health status when faced with pesticides.

10.
Article in English | MEDLINE | ID: mdl-36767825

ABSTRACT

Due to a widespread occurrence of multidrug-resistant pathogenic strains of bacteria, there is an urgent need to look for antimicrobial substances, and honey with its antimicrobial properties is a very promising substance. In this study, we examined for the first time antimicrobial properties of novel varietal honeys, i.e., plum, rapeseed, Lime, Phacelia, honeydew, sunflower, willow, and multifloral-P (Prunus spinosa L.), multifloral-AP (Acer negundo L., Prunus spinosa L.), multifloral-Sa (Salix sp.), multifloral-Br (Brassica napus L.). Their antimicrobial activity was tested against bacteria (such as Escherichia coli, Bacillus circulans, Staphylococcus aureus, Pseudomonas aeruginosa), yeasts (such as Saccharomyces cerevisiae and Candida albicans) and mold fungi (such as Aspergillus niger). In tested honeys, phenolic acids constituted one of the most important groups of compounds with antimicrobial properties. Our study found phenolic acids to occur in greatest amount in honeydew honey (808.05 µg GAE/g), with the highest antifungal activity aiming at A. niger. It was caffeic acid that was discovered in the greatest amount (in comparison with all phenolic acids tested). It was found in the highest amount in such honeys as phacelia-356.72 µg/g, multifloral (MSa) and multifloral (MBr)-318.9 µg/g. The highest bactericidal activity against S. aureus was found in multifloral honeys MSa and MBr. Additionally, the highest amount of syringic acid and cinnamic acid was identified in rapeseed honey. Multifloral honey (MAP) showed the highest bactericidal activity against E. coli, and multifloral honey (MSa) against S. aureus. Additionally, multifloral honey (MBr) was effective against E. coli and S. aureus. Compounds in honeys, such as lysozyme-like and phenolic acids, i.e., coumaric, caffeic, cinnamic and syringic acids, played key roles in the health-benefit properties of honeys tested in our study.


Subject(s)
Honey , Staphylococcus aureus , Microbial Sensitivity Tests , Escherichia coli , Anti-Bacterial Agents/pharmacology , Bacteria
11.
Foods ; 11(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36553819

ABSTRACT

Potato is an important agricultural product, ranked as the fourth most common product in the human diet. Potato can be consumed in various forms. As customers expect safe and high-quality products, precise and rapid determination of the quality and composition of potatoes is of crucial significance. The quality of potatoes may alter during the storage period due to various phenomena. Soluble solids content (SSC) and pH are among the quality parameters experiencing alteration during the storage process. This study is thus aimed to assess the variations in SSC and pH during the storage of potatoes using an electronic nose and Vis/NIR spectroscopic techniques with the help of prediction models including partial least squares (PLS), multiple linear regression (MLR), principal component regression (PCR), support vector regression (SVR) and an artificial neural network (ANN). The variations in the SSC and pH are ascending and significant. The results also indicate that the SVR model in the electronic nose has the highest prediction accuracy for the SSC and pH (81, and 92%, respectively). The artificial neural network also managed to predict the SSC and pH at accuracies of 83 and 94%, respectively. SVR method shows the lowest accuracy in Vis/NIR spectroscopy while the PLS model exhibits the best performance in the prediction of the SSC and pH with respective precision of 89 and 93% through the median filter method. The accuracy of the ANN was 85 and 90% in the prediction of the SSC and pH, respectively.

12.
Molecules ; 27(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36500625

ABSTRACT

The aim of this study was to detect and identify the volatile compounds in coffee that was obtained in defect roast processes versus standard roasting and to determine the type and strength of the correlations between the roast defects and the volatile compound profile in roasted coffee beans. In order to achieve this goal, the process of coffee bean roasting was set to produce an underdeveloped coffee defect, an overdeveloped coffee defect, and defectless coffee. The "Typica" variety of Arabica coffee beans was used in this study. The study material originated from a plantation that is located at an altitude of 1400-2000 m a.s.l. in Huehuetenango Department, Guatemala. The analyses were carried out with the use of gas chromatography/mass spectrometry (GC-MS) and an electronic nose. This study revealed a correlation between the identified groups of volatile compounds and the following coffee roasting parameters: the time to the first crack, the drying time, and the mean temperatures of the coffee beans and the heating air. The electronic nose helped to identify the roast defects.


Subject(s)
Coffea , Electronic Nose , Gas Chromatography-Mass Spectrometry , Food Handling/methods , Desiccation , Temperature , Hot Temperature , Coffea/chemistry
13.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430937

ABSTRACT

A new type of corn snack has been created containing additions of wild garlic (Allium ursinum L.). This medicinal and dietary plant has a long tradition of use in folk medicine. However, studies on wild garlic composition and activity are fairly recent and scarce. This research aimed to investigate the influence of the screw speed and A. ursinum amounts on the antiradical properties as well as the content of polyphenolic compounds and individual phenolic acids of innovative snacks enriched with wild garlic leaves. The highest radical scavenging activity and content of polyphenols and phenolic acids were found in the snacks enriched with 4% wild garlic produced using screw speed 120 rpm. The obtained findings demonstrated that snacks enriched with wild garlic are a rich source of polyphenolic compounds. Since the concentration of such compounds is affected by many factors, e.g., plant material, presence of other compounds, and digestion, the second aim of this study was to determine radical scavenging activity, the content of polyphenols, and individual phenolic acids of snacks after in vitro simulated gastrointestinal digestion. Using an in vitro two-stage model, authors noted a significant difference between the concentration of polyphenolic compounds and the polyphenol content of the plant material before digestion.


Subject(s)
Garlic , Snacks , Polyphenols , Plant Leaves , Digestion
14.
Pathogens ; 11(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365020

ABSTRACT

Honeybees are important pollinators, but they are continuously exposed to a variety of fungal and bacterial diseases. One of the various diseases affecting honeybees is nosemosis caused by microsporidia from the Nosema genus. Honeybees are mainly infected through consumption of infected food or faeces containing Nosema spp. spores. Nosemosis causes damage to the middle intestine epithelium, which leads to food absorption disorders and honeybee malnutrition. Fumagillin, i.e., the antibiotic used to treat nosemosis, was withdrawn in 2016 from EU countries. Therefore, researchers have been looking for compounds of both natural and synthetic origin to fight nosemosis. Such compounds should not have a negative impact on bees but is expected to inhibit the disease. Natural compounds tested against nosemosis include, e.g., essential oils (EOs), plant extracts, propolis, and bacterial metabolites, while synthetic substances tested as anti-nosemosis agents are represented by porphyrins, vitamins, antibiotics, phenolic, ascorbic acids, and others. This publication presents an 18-year overview of various studies of a number of natural and synthetic compounds used in the treatment and prevention of nosemosis cited in PubMed, GoogleScholar, and CrossRef.

15.
Molecules ; 27(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35684450

ABSTRACT

Five potato varieties were studied using an electronic nose with nine MOS sensors. Parameters measured included carbohydrate content, sugar level, and the toughness of the potatoes. Routine tests were carried out while the signals for each potato were measured, simultaneously, using an electronic nose. The signals obtained indicated the concentration of various chemical components. In addition to support vector machines (SVMs that were used for the classification of the samples, chemometric methods, such as the partial least squares regression (PLSR) method, the principal component regression (PCR) method, and the multiple linear regression (MLR) method, were used to create separate regression models for sugar and carbohydrates. The predictive power of the regression models was characterized by a coefficient of determination (R2), a root-mean-square error of prediction (RMSEP), and offsets. PLSR was able to accurately model the relationship between the smells of different types of potatoes, sugar, and carbohydrates. The highest and lowest accuracy of models for predicting sugar and carbohydrates was related to Marfona potatoes and Sprite cultivar potatoes. In general, in all cultivars, the accuracy in predicting the amount of carbohydrates was somewhat better than the accuracy in predicting the amount of sugar. Moreover, the linear function had 100% accuracy for training and validation in the C-SVM method for classification of five potato groups. The electronic nose could be used as a fast and non-destructive method for detecting different potato varieties. Researchers in the food industry will find this method extremely useful in selecting the desired product and samples.


Subject(s)
Solanum tuberosum , Carbohydrates/analysis , Chemometrics , Least-Squares Analysis , Sugars
16.
Molecules ; 27(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268660

ABSTRACT

The aim of the study was to analyze the process of roasting coffee beans in a convection-conduction roaster (CC) without a heat exchanger and a convection-conduction-radiation roaster (CCR) with a heat exchanger for determination of the aroma profile. The aroma profile was analyzed using the SPME/GC-MS technique, and an Agrinose electronic nose was used to determine the aroma profile intensity. Arabica coffee beans from five regions of the world, namely, Peru, Costa Rica, Ethiopia, Guatemala, and Brazil, were the research material. The chemometric analyses revealed the dominance of azines, alcohols, aldehydes, hydrazides, and acids in the coffee aroma profile. Their share distinguished the aroma profiles depending on the country of origin of the coffee beans. The high content of pyridine from the azine group was characteristic for the coffee roasting process in the convection-conduction roaster without a heat exchanger, which was shown by the PCA analysis. The increased content of pyridine resulted from the appearance of coal tar, especially in the CC roaster. Pyridine has an unpleasant and bitter plant-like odor, and its excess is detrimental to the human organism. The dominant and elevated content of pyridine is a defect of the coffee roasting process in the CC roaster compared to the process carried out in the CCR machine. The results obtained with the Agrinose showed that the CC roasting method had a significant effect on the sensor responses. The effect of coal tar on the coffee beans resulted in an undesirable aroma profile characterized by increased amounts of aromatic volatile compounds and higher responses of Agrinose sensors.


Subject(s)
Volatile Organic Compounds
17.
Int J Mol Sci ; 23(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35054828

ABSTRACT

Obesity is a global health problem needing urgent research. Synthetic anti-obesity drugs show side effects and variable effectiveness. Thus, there is a tendency to use natural compounds for the management of obesity. There is a considerable body of knowledge, supported by rigorous experimental data, that natural polyphenols, including curcumin, can be an effective and safer alternative for managing obesity. Curcumin is a is an important compound present in Curcuma longa L. rhizome. It is a lipophilic molecule that rapidly permeates cell membrane. Curcumin has been used as a pharmacological traditional medicinal agent in Ayurvedic medicine for ∼6000 years. This plant metabolite doubtless effectiveness has been reported through increasingly detailed in vitro, in vivo and clinical trials. Regarding its biological effects, multiple health-promoting, disease-preventing and even treatment attributes have been remarkably highlighted. This review documents the status of research on anti-obesity mechanisms and evaluates the effectiveness of curcumin for management of obesity. It summarizes different mechanisms of anti-obesity action, associated with the enzymes, energy expenditure, adipocyte differentiation, lipid metabolism, gut microbiota and anti-inflammatory potential of curcumin. However, there is still a need for systematic and targeted clinical studies before curcumin can be used as the mainstream therapy for managing obesity.


Subject(s)
Curcuma/chemistry , Curcumin/administration & dosage , Obesity/diet therapy , Clinical Trials as Topic , Curcumin/pharmacology , Energy Metabolism/drug effects , Health Promotion , Humans , Lipid Metabolism/drug effects , Medicine, Ayurvedic , Weight Loss
18.
Materials (Basel) ; 14(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34947499

ABSTRACT

The present study sought to analyze a novel type of polymer membrane fuel cell to be used in vehicles. The performance of the fuel cell was evaluated by modeling the types of production-consumption heat in the anode and cathode (including half-reaction heat, activation heat, and absorption/desorption heat) and waterflood conditions. The meshing of flow channels was carried out by square cells and the governing equations were numerically discretized in the steady mode using the finite difference method followed by solving in MATLAB software. Based on the simulation results, the anodic absorption/desorption heat, anodic half-reaction heat, and cathodic activation heat are positive while the cathodic absorption/desorption heat and cathodic half-reaction heat show negative values. All heat values exhibit a decremental trend over the flow channel. Considering the effect of relative humidity, the relative humidity of the cathode showed no significant change while the anode relative humidity decreased along the flow channel. The velocity at the membrane layer was considerably lower, due to the smaller permeability coefficient of this layer compared to the gas diffusion and reactants (cathode) layers.

19.
Sensors (Basel) ; 21(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502725

ABSTRACT

In response to one of the most important challenges of the century, i.e., the estimation of the food demands of a growing population, advanced technologies have been employed in agriculture. The potato has the main contribution to people's diet worldwide. Therefore, its different aspects are worth studying. The large number of potato varieties, lack of awareness about its new cultivars among farmers to cultivate, time-consuming and inaccurate process of identifying different potato cultivars, and the significance of identifying potato cultivars and other agricultural products (in every food industry process) all necessitate new, fast, and accurate methods. The aim of this study was to use an electronic nose, along with chemometrics methods, including PCA, LDA, and ANN as fast, inexpensive, and non-destructive methods for detecting different potato cultivars. In the present study, nine sensors with the best response to VOCs were adopted. VOCs sensors were used at various VOCs concentrations (1 to 10,000 ppm) to detect different gases. The results showed that a PCA with two main components, PC1 and PC2, described 92% of the total samples' dataset variance. In addition, the accuracy of the LDA and ANN methods were 100 and 96%, respectively.


Subject(s)
Solanum tuberosum , Agriculture , Electronic Nose , Humans , Machine Learning
20.
Int J Mol Sci ; 22(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207143

ABSTRACT

Epidemiological studies have emphasized the association between a diet rich in fruits and vegetables and a lower frequency of occurrence of inflammatory-related disorders. Black chokeberry (Aronia melanocarpa L.) is a valuable source of biologically active compounds that have been widely investigated for their role in health promotion and cardiovascular disease prevention. Many in vitro and in vivo studies have demonstrated that consumption of these fruits is associated with significant improvements in hypertension, LDL oxidation, lipid peroxidation, total plasma antioxidant capacity and dyslipidemia. The mechanisms for these beneficial effects include upregulation of endothelial nitric oxide synthase, decreased oxidative stress, and inhibition of inflammatory gene expression. Collected findings support the recommendation of such berries as an essential fruit group in a heart-healthy diet. The aim of this review was to summarize the reports on the impact of black chokeberry fruits and extracts against several cardiovascular diseases, e.g., hyperlipidemia, hypercholesterolemia, hypertension, as well as to provide an analysis of the antioxidant and anti-inflammatory effect of these fruits in the abovementioned disorders.


Subject(s)
Fruit/chemistry , Photinia/chemistry , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Humans , Metabolic Diseases/diagnosis , Metabolic Diseases/drug therapy , Metabolic Diseases/etiology , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...