Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hematol ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152767

ABSTRACT

In classical Hodgkin lymphoma (cHL), responsiveness to immune-checkpoint blockade (ICB) is associated with specific tumor microenvironment (TME) and peripheral blood features. The role of ICB in nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is not established. To gain insights into its potential in NLPHL, we compared TME and peripheral blood signatures between HLs using an integrative multiomic analysis. A discovery/validation approach in 121 NLPHL and 114 cHL patients highlighted >2-fold enrichment in programmed cell death-1 (PD-1) and T-cell Ig and ITIM domain (TIGIT) gene expression for NLPHL versus cHL. Multiplex imaging showed marked increase in intra-tumoral protein expression of PD-1+ (and/or TIGIT+) CD4+ T-cells and PD-1+CD8+ T-cells in NLPHL compared to cHL. This included T-cells that rosetted with lymphocyte predominant (LP) and Hodgkin Reed-Sternberg (HRS) cells. In NLPHL, intra-tumoral PD-1+CD4+ T-cells frequently expressed TCF-1, a marker of heightened T-cell response to ICB. The peripheral blood signatures between HLs were also distinct, with higher levels of PD-1+TIGIT+ in TH1, TH2, and regulatory CD4+ T-cells in NLPHL versus cHL. Circulating PD-1+CD4+ had high levels of TCF-1. Notably, in both lymphomas, highly expanded populations of clonal TIGIT+PD-1+CD4+ and TIGIT+PD-1+CD8+ T-cells in the blood were also present in the TME, indicating that immune-checkpoint expressing T-cells circulated between intra-tumoral and blood compartments. In in vitro assays, ICB was capable of reducing rosette formation around LP and HRS cells, suggesting that disruption of rosetting may be a mechanism of action of ICB in HL. Overall, results indicate that further evaluation of ICB is warranted in NLPHL.

2.
Br J Haematol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112220

ABSTRACT

Radiotherapy is routinely used for management of limited-stage follicular lymphoma (FL), yet half of patients ultimately relapse. We hypothesized that the presence of specific gene mutations may predict outcomes. We performed targeted sequencing of a 69-gene panel in 117 limited-stage FL patients treated with radiotherapy and identified recurrently mutated genes. CREBBP was most frequently mutated, and mutated CREBBP was associated with inferior progression-free survival, though not after false discovery rate adjustment. This association failed to validate in an independent cohort. We conclude that recurrent gene mutations do not predict outcomes in this setting. Alternative biomarkers may offer better prognostic insight.

3.
Blood Cancer J ; 14(1): 128, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112453

ABSTRACT

Follicular lymphoma (FL) exhibits considerable variability in biological features and clinical trajectories across patients. To dissect the diversity of FL, we utilized a Bernoulli mixture model to identify genetic subtypes in 713 pre-treatment tumor tissue samples. Our analysis revealed the existence of five subtypes with unique genetic profiles that correlated with clinicopathological characteristics. The clusters were enriched in specific mutations as follows: CS (CREBBP and STAT6), TT (TNFAIP3 and TP53), GM (GNA13 and MEF2B), Q (quiescent, for low mutation burden), and AR (mutations of mTOR pathway-related genes). The subtype Q was enriched for patients with stage I disease and associated with a lower proliferative history than the other subtypes. The AR subtype was unique in its enrichment for IgM-expressing FL cases and was associated with advanced-stage and more than 4 nodal sites. The existence of subtypes was validated in an independent cohort of 418 samples from the GALLIUM trial. Notably, patients assigned to the TT subtype consistently experienced inferior progression-free survival when treated with immunochemotherapy. Our findings offer insight into core pathways distinctly linked with each FL cluster and are expected to be informative in the era of targeted therapies.


Subject(s)
Lymphoma, Follicular , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Female , Male , Mutation , Middle Aged , Aged , Biomarkers, Tumor/genetics , Prognosis
4.
Acta Haematol ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38479365

ABSTRACT

INTRODUCTION: Hodgkin Lymphoma (HL) is deficient in Major Histocompatibility Complex-class I, rendering it susceptible to anti-tumoral immunity by Natural Killer (NK)-cells. Despite the functional impairment of PD-1+ NK-cells in HL, the underlying mechanisms of NK-cell dysfunction remain unclear. METHODS: This study involved 14 HL patients and SNK10/KHYG-1 cell lines to assess NK-cell activation against cancer cells. Activation was measured through transcript (PCR) and protein expression (flow cytometry). Regulatory mechanisms associated with IRE1α activation were validated through knock-down and luciferase reporter assays. RESULTS: Our findings reveal a novel role for IRE1α-endonuclease in fine-tuning NK-cell effector functions by orchestrating the XBP1s/microRNA-34a-5p/PD-1 axis. When NK-cells encounter cancer cells, IRE1α-endonuclease activates the decay of microRNA-34a-5p, resulting in increased expression of XBP1s and PD-1. IRE1α-endonuclease activation enhances NK-cells function while promoting PD-1 expression. In turn, PD-1 is directly regulated by microRNA-34a-5p, which binds to the 3'UTR of PD-1 transcript to repress PD-1 protein on the NK-cell surface. Importantly, IRE1α-pathway activation is impaired in NK-cells from HL patients. CONCLUSION: The IRE1α-endonuclease emerges as a key player, simultaneously regulating the XBP1s/microRNA-34a-5p/PD-1 axis in NK-cells, a process disrupted in HL. Targeting the IRE1α-pathway holds promise as a therapeutic strategy to optimise NK-cell functions in Hodgkin Lymphoma treatments.

8.
Haematologica ; 109(7): 2131-2143, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38268493

ABSTRACT

T-cell-engaging bispecific antibody (T-BsAb, also known as BiTE) therapy has emerged as a powerful therapeutic modality against multiple myeloma. Given that T-BsAb therapy redirects endogenous T cells to eliminate tumor cells, reinvigorating dysfunctional T cells may be a potential approach to improve the efficacy of T-BsAb. While various immunostimulatory cytokines can potentiate effector T-cell functions, the optimal cytokine treatment for T-BsAb therapy is yet to be established, partly due to a concern of cytokine release syndrome driven by aberrant interferon (IFN)-γ production. Here, we functionally screen immunostimulatory cytokines to determine an ideal combination partner for T-BsAb therapy. This approach reveals interleukin (IL)-21 as a potential immunostimulatory cytokine with the ability to augment T-BsAb-mediated release of granzyme B and perforin, without increasing IFN-γ release. Transcriptome profiling and functional characterization strongly support that IL-21 selectively targets the cytotoxic granule exocytosis pathway, but not pro-inflammatory responses. Notably, IL-21 modulates multiple steps of cytotoxic effector functions including upregulation of co-activating CD226 receptor, increasing cytotoxic granules, and promoting cytotoxic granule delivery at the immunological synapse. Indeed, T-BsAb-mediated myeloma killing is cytotoxic granule-dependent, and IL-21 priming significantly augments cytotoxic activities. Furthermore, in vivo IL-21 treatment induces cytotoxic effector reprogramming in bone marrow T cells, showing synergistic anti-myeloma effects in combination with T-BsAb therapy. Together, harnessing the cytotoxic granule exocytosis pathway by IL-21 may be a potential approach to achieve better responses by T-BsAb therapy.


Subject(s)
Antibodies, Bispecific , Exocytosis , Multiple Myeloma , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Humans , Mice , Animals , Multiple Myeloma/immunology , Multiple Myeloma/drug therapy , Multiple Myeloma/therapy , Multiple Myeloma/pathology , Cytotoxicity, Immunologic , Interleukins/metabolism , Cell Line, Tumor , Cytokines/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/drug effects , Granzymes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects
9.
Br J Haematol ; 204(2): 415-433, 2024 02.
Article in English | MEDLINE | ID: mdl-38155519

ABSTRACT

Epstein-Barr virus (EBV)-associated lymphomas cover a range of histological B- and T-cell non-Hodgkin and Hodgkin lymphoma subtypes. The role of EBV on B-cell malignant pathogenesis and its impact on the tumour microenvironment are intriguing but incompletely understood. Both the International Consensus Classification (ICC) and 5th Edition of the World Health Organization (WHO-HAEM5) proposals give prominence to the distinct clinical, prognostic, genetic and tumour microenvironmental features of EBV in lymphoproliferative disorders. There have been major advances in our biological understanding, in how to harness features of EBV and its host immune response for targeted therapy, and in using EBV as a method to monitor disease response. In this article, we showcase the latest developments and how they may be integrated to stimulate new and innovative approaches for further lines of investigation and therapy.


Subject(s)
Epstein-Barr Virus Infections , Hodgkin Disease , Lymphoma, Non-Hodgkin , Lymphoma , Lymphoproliferative Disorders , Humans , Herpesvirus 4, Human/genetics , Hodgkin Disease/pathology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL