Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cancer Biomark ; 39(2): 113-125, 2024.
Article in English | MEDLINE | ID: mdl-37980646

ABSTRACT

BACKGROUND: Lung cancer is the primary cause of cancer-induced death. In addition to prevention and improved treatment, it has increasingly been established that early detection is critical to successful remission. OBJECTIVE: The aim of this study was to identify volatile organic compounds (VOCs) in urine that could help diagnose mouse lung cancer at an early stage of its development. METHODS: We analysed the VOC composition of urine in a genetically engineered lung adenocarcinoma mouse model with oncogenic EGFR doxycycline-inducible lung-specific expression. We compared the urinary VOCs of 10 cancerous mice and 10 healthy mice (controls) before and after doxycycline induction, every two weeks for 12 weeks, until full-blown carcinomas appeared. We used SPME fibres and gas chromatography - mass spectrometry to detect variations in cancer-related urinary VOCs over time. RESULTS: This study allowed us to identify eight diagnostic biomarkers that help discriminate early stages of cancer tumour development (i.e., before MRI imaging techniques could identify it). CONCLUSION: The analysis of mice urinary VOCs have shown that cancer can induce changes in odour profiles at an early stage of cancer development, opening a promising avenue for early diagnosis of lung cancer in other models.


Subject(s)
Lung Neoplasms , Volatile Organic Compounds , Humans , Animals , Mice , Doxycycline , Lung Neoplasms/diagnosis , Biomarkers , Lung
2.
Biochim Biophys Acta Rev Cancer ; 1878(1): 188850, 2023 01.
Article in English | MEDLINE | ID: mdl-36528192

ABSTRACT

The olfactory capacity of animals has long been used by humans to help with various activities, e.g., hunting, detecting mines, locating people, and diagnosing diseases. Cancer is among the leading diseases causing death worldwide. Several recent studies have underscored the benefit of using scent to detect cancer, and this paper will review the studies using animals to detect tumor scents. A large variety of animals have been used for this purpose-dogs, rodents, insects, and nematodes-and have shown their capacity to detect cancer, with a success rate close to 90%. Here we discuss these studies, their methodologies, and the animal models used. Finally, we discuss the medical perspectives for cancer diagnosis using odors.


Subject(s)
Neoplasms , Odorants , Humans , Animals , Dogs , Smell , Neoplasms/diagnosis , Models, Animal
3.
Biol Open ; 11(4)2022 04 15.
Article in English | MEDLINE | ID: mdl-35403195

ABSTRACT

Chemical communication plays a major role in social interactions. Cancer, by inducing changes in body odours, may alter interactions between individuals. In the framework of research targeting non-invasive methods to detect early stages of cancer development, this study asked whether untrained mice could detect odour changes in cancerous congeners. If yes, were they able to detect cancer at an early developmental stage? Did it influence female preference? Did variations in volatile organic components of the odour source paralleled mice behavioural responses? We used transgenic mice strains developing or not lung cancer upon antibiotic ingestion. We sampled soiled bedding of cancerous mice (CC) and not cancerous mice (NC), at three experimental conditions: before (T0), early stage (T2) and late stage (T12) of cancer development. Habituation/generalisation and two-way preference tests were performed where soiled beddings of CC and NC mice were presented to wild-derived mice. The composition and relative concentration of volatile organic components (VOC) in the two stimuli types were analysed. Females did not show directional preference at any of the experimental conditions, suggesting that cancer did not influence their choice behaviour. Males did not discriminate between CC and NC stimuli at T0 but did so at T2 and T12, indicating that wild-derived mice could detect cancer at an early stage of development. Finally, although the VOC bouquet differed between CC and NC it did not seem to parallel the observed behavioural response suggesting that other types of odorant components might be involved in behavioural discrimination between CC and NC mice.


Subject(s)
Neoplasms , Volatile Organic Compounds , Animals , Female , Male , Mice , Neoplasms/diagnosis , Neoplasms/etiology , Odorants
4.
Heredity (Edinb) ; 126(2): 266-278, 2021 02.
Article in English | MEDLINE | ID: mdl-32980864

ABSTRACT

Following human occupation, the house mouse has colonised numerous islands, exposing the species to a wide variety of environments. Such a colonisation process, involving successive founder events and bottlenecks, may either promote random evolution or facilitate adaptation, making the relative importance of adaptive and stochastic processes in insular evolution difficult to assess. Here, we jointly analyse genetic and morphometric variation in the house mice (Mus musculus domesticus) from the Orkney archipelago. Genetic analyses, based on mitochondrial DNA and microsatellites, revealed considerable genetic structure within the archipelago, suggestive of a high degree of isolation and long-lasting stability of the insular populations. Morphometric analyses, based on a quantification of the shape of the first upper molar, revealed considerable differentiation compared to Western European populations, and significant geographic structure in Orkney, largely congruent with the pattern of genetic divergence. Morphological diversification in Orkney followed a Brownian motion model of evolution, suggesting a primary role for random drift over adaptation to local environments. Substantial structuring of human populations in Orkney has recently been demonstrated, mirroring the situation found here in house mice. This synanthropic species may thus constitute a bioproxy of human structure and practices even at a very local scale.


Subject(s)
Genetics, Population , Microsatellite Repeats , Animals , DNA, Mitochondrial/genetics , Genetic Drift , Mice
5.
Genes (Basel) ; 11(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32640559

ABSTRACT

Analysis of contact zones between parapatric chromosomal races can help our understanding of chromosomal divergence and its influence on the speciation process. Monitoring the position and any movement of contact zones can allow particular insights. This study investigates the present (2012-2014) and past (1998-2002) distribution of two parapatric house mouse chromosomal races-PEDC (Estreito da Calheta) and PADC (Achadas da Cruz)-on Madeira Island, aiming to identify changes in the location and width of their contact. We also extended the 1998-2002 sampling area into the range of another chromosomal race-PLDB (Lugar de Baixo). Clinal analysis indicates no major geographic alterations in the distribution and chromosomal characteristics of the PEDC and PADC races but exhibited a significant shift in position of the Rb (7.15) fusion, resulting in the narrowing of the contact zone over a 10+ year period. We discuss how this long-lasting contact zone highlights the role of landscape on mouse movements, in turn influencing the chromosomal characteristics of populations. The expansion of the sampling area revealed new chromosomal features in the north and a new contact zone in the southern range involving the PEDC and PLDB races. We discuss how different interacting mechanisms (landscape resistance, behaviour, chromosomal incompatibilities, meiotic drive) may help to explain the pattern of chromosomal variation at these contacts between chromosomal races.


Subject(s)
Chromosomes/genetics , Ecosystem , Genetic Speciation , Mice/genetics , Animal Distribution , Animals , Islands , Mice/classification , Mice/physiology , Phylogeny , Reproductive Isolation
6.
Mol Ecol ; 26(19): 5189-5202, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28626946

ABSTRACT

Expression divergence, rather than sequence divergence, has been shown to be important in speciation, particularly in the early stages of divergence of traits involved in reproductive isolation. In the two European subspecies of house mice, Mus musculus musculus and Mus musculus domesticus, earlier studies have demonstrated olfactory-based assortative mate preference in populations close to their hybrid zone. It has been suggested that this behaviour evolved following the recent secondary contact between the two taxa (~3,000 years ago) in response to selection against hybridization. To test for a role of changes in gene expression in the observed behavioural shift, we conducted a RNA sequencing experiment on mouse vomeronasal organs. Key candidate genes for pheromone-based subspecies recognition, the vomeronasal receptors, are expressed in these organs. Overall patterns of gene expression varied significantly between samples from the two subspecies, with a large number of differentially expressed genes between the two taxa. In contrast, only ~200 genes were found repeatedly differentially expressed between populations within M. m. musculus that did or did not display assortative mate preferences (close to or more distant from the hybrid zone, respectively), with an overrepresentation of genes belonging to vomeronasal receptor family 2. These receptors are known to play a key role in recognition of chemical cues that handle information about genetic identity. Interestingly, four of five of these differentially expressed receptors belong to the same phylogenetic cluster, suggesting specialization of a group of closely related receptors in the recognition of odorant signals that may allow subspecies recognition and assortative mating.


Subject(s)
Mating Preference, Animal , Mice/genetics , Reproductive Isolation , Animals , Denmark , Gene Expression , Genetics, Population , Hybridization, Genetic , Phylogeny , Receptors, Odorant/genetics , Vomeronasal Organ/metabolism
7.
Sci Rep ; 7: 44992, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28337988

ABSTRACT

When hybridisation carries a cost, natural selection is predicted to favour evolution of traits that allow assortative mating (reinforcement). Incipient speciation between the two European house mouse subspecies, Mus musculus domesticus and M.m.musculus, sharing a hybrid zone, provides an opportunity to understand evolution of assortative mating at a molecular level. Mouse urine odours allow subspecific mate discrimination, with assortative preferences evident in the hybrid zone but not in allopatry. Here we assess the potential of MUPs (major urinary proteins) as candidates for signal divergence by comparing MUP expression in urine samples from the Danish hybrid zone border (contact) and from allopatric populations. Mass spectrometric characterisation identified novel MUPs in both subspecies involving mostly new combinations of amino acid changes previously observed in M.m.domesticus. The subspecies expressed distinct MUP signatures, with most MUPs expressed by only one subspecies. Expression of at least eight MUPs showed significant subspecies divergence both in allopatry and contact zone. Another seven MUPs showed divergence in expression between the subspecies only in the contact zone, consistent with divergence by reinforcement. These proteins are candidates for the semiochemical barrier to hybridisation, providing an opportunity to characterise the nature and evolution of a putative species recognition signal.


Subject(s)
Genetic Heterogeneity , Genetic Variation , Proteins/genetics , Animals , Europe , Evolution, Molecular , Female , Geography , Male , Mice , Proteins/metabolism , Proteome , Proteomics/methods , Selection, Genetic , Species Specificity
9.
Sci Rep ; 6: 22881, 2016 03 11.
Article in English | MEDLINE | ID: mdl-26964761

ABSTRACT

Most sex differences in phenotype are controlled by gonadal hormones, but recent work on laboratory strain mice that present discordant chromosomal and gonadal sex showed that sex chromosome complement can have a direct influence on the establishment of sex-specific behaviours, independently from gonads. In this study, we analyse the behaviour of a rodent with naturally occurring sex reversal: the African pygmy mouse Mus minutoides, in which all males are XY, while females are of three types: XX, XX* or X*Y (the asterisk represents an unknown X-linked mutation preventing masculinisation of X*Y embryos). X*Y females show typical female anatomy and, interestingly, have greater breeding performances. We investigate the link between sex chromosome complement, behaviour and reproductive success in females by analysing several behavioural features that could potentially influence their fitness: female attractiveness, aggressiveness and anxiety. Despite sex chromosome complement was not found to impact male mate preferences, it does influence some aspects of both aggressiveness and anxiety: X(*)Y females are more aggressive than the XX and XX*, and show lower anxiogenic response to novelty, like males. We discuss how these behavioural differences might impact the breeding performances of females, and how the sex chromosome complement could shape the differences observed.

10.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26842576

ABSTRACT

By accompanying human travels since prehistorical times, the house mouse dispersed widely throughout the world, and colonized many islands. The origin of the travellers determined the phylogenetic source of the insular mice, which encountered diverse ecological and environmental conditions on the various islands. Insular mice are thus an exceptional model to disentangle the relative role of phylogeny, ecology and climate in evolution. Molar shape is known to vary according to phylogeny and to respond to adaptation. Using for the first time a three-dimensional geometric morphometric approach, compared with a classical two-dimensional quantification, the relative effects of size variation, phylogeny, climate and ecology were investigated on molar shape diversity across a variety of islands. Phylogeny emerged as the factor of prime importance in shaping the molar. Changes in competition level, mostly driven by the presence or absence of the wood mouse on the different islands, appeared as the second most important effect. Climate and size differences accounted for slight shape variation. This evidences a balanced role of random differentiation related to history of colonization, and of adaptation possibly related to resource exploitation.


Subject(s)
Biological Evolution , Mice/anatomy & histology , Mice/physiology , Molar/anatomy & histology , Phylogeny , Animal Distribution , Animals , Atlantic Islands , DNA, Mitochondrial/genetics , Europe , Female , Indian Ocean Islands , Male , Mice/classification , Mice/genetics , Sequence Analysis, DNA
11.
Mol Ecol ; 24(16): 4222-4237, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26132782

ABSTRACT

Reinforcement is the process by which prezygotic isolation is strengthened as a response to selection against hybridization. Most empirical support for reinforcement comes from the observation of its possible phenotypic signature: an accentuated degree of prezygotic isolation in the hybrid zone as compared to allopatry. Here, we implemented a novel approach to this question by seeking for the signature of reinforcement at the genetic level. In the house mouse, selection against hybrids and enhanced olfactory-based assortative mate preferences are observed in a hybrid zone between the two European subspecies Mus musculus musculus and M. m. domesticus, suggesting a possible recent reinforcement event. To test for the genetic signature of reinforcing selection and identify genes involved in sexual isolation, we adopted a hitchhiking mapping approach targeting genomic regions containing candidate genes for assortative mating in mice. We densely scanned these genomic regions in hybrid zone and allopatric samples using a large number of fast evolving microsatellite loci that allow the detection of recent selection events. We found a handful of loci showing the expected pattern of significant reduction in variability in populations close to the hybrid zone, showing assortative odour preference in mate choice experiments as compared to populations further away and displaying no such preference. These loci lie close to genes that we pinpoint as testable candidates for further investigation.


Subject(s)
Genetics, Population , Hybridization, Genetic , Mating Preference, Animal , Mice/genetics , Selection, Genetic , Animals , Austria , Denmark , Female , Genome , Genomics , Male , Microsatellite Repeats , Odorants , Phenotype , Sequence Analysis, DNA
12.
PLoS One ; 10(2): e0117750, 2015.
Article in English | MEDLINE | ID: mdl-25693176

ABSTRACT

Coexistence often involves niche differentiation either as the result of environmental divergence, or in response to competition. Disentangling the causes of such divergence requires that environmental variation across space is taken into account, which is rarely done in empirical studies. We address the role of environmental variation versus competition in coexistence between two rodent species: Rhabdomys bechuanae (bechuanae) and Rhabdomys dilectus dilectus (dilectus) comparing their habitat preference and home range (HR) size in areas with similar climates, where their distributions abut (allopatry) or overlap (sympatry). Using Outlying Mean Index analyses, we test whether habitat characteristics of the species deviate significantly from a random sample of available habitats. In allopatry, results suggest habitat selection: dilectus preferring grasslands with little bare soil while bechuanae occurring in open shrublands. In sympatry, shrubland type habitats dominate and differences are less marked, yet dilectus selects habitats with more cover than bechuanae. Interestingly, bechuanae shows larger HRs than dilectus, and both species display larger HRs in sympatry. Further, HR overlaps between species are lower than expected. We discuss our results in light of data on the phylogeography of the genus and propose that evolution in allopatry resulted in adaptation leading to different habitat preferences, even at their distribution margins, a divergence expected to facilitate coexistence. However, since sympatry occurs in sites where environmental characteristics do not allow complete species separation, competition may explain reduced inter-species overlap and character displacement in HR size. This study reveals that both environmental variation and competition may shape species coexistence.


Subject(s)
Ecosystem , Murinae/physiology , Adaptation, Physiological , Animals , Homing Behavior , Murinae/genetics , Sympatry
13.
Behav Genet ; 44(1): 56-67, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24158628

ABSTRACT

The genetics of chemical signals is poorly understood. We addressed this issue in two subspecies of mice, Mus musculus musculus and M. m. domesticus, comparing their odor phenotypes with that of their hybrids. Earlier studies indicated that these subspecies could be discriminated on the basis of their urinary odor. We assessed male odor phenotypes from perception of musculus mice acting as olfactometers. Our results point to a complex genetic determinism. Reciprocal F1 hybrids produced a distinct odor phenotype, with shared characteristics distinguishing them from their parents, and stronger similarity to domesticus than to musculus. These results are consistent with implications of genes with partial dominance and a parent of origin effect. Further, similarities between reciprocal F2 allowed us to reject a direct role of the Y-chromosome in shaping the odor phenotype. However we show that the X-chromosome could be involved in explaining domesticus phenotype, while epistasis between genes on the sex chromosomes and the autosomes might influence musculus phenotype.


Subject(s)
Cues , Mice/genetics , Phenotype , Animals , Male , Quantitative Trait Loci , Species Specificity , X Chromosome , Y Chromosome
14.
Proc Biol Sci ; 281(1776): 20132733, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24352947

ABSTRACT

Sexual selection may hinder gene flow across contact zones when hybrid recognition signals are discriminated against. We tested this hypothesis in a unimodal hybrid zone between Mus musculus musculus and Mus musculus domesticus where a pattern of reinforcement was described and lower hybrid fitness documented. We presented mice from the border of the hybrid zone with a choice between opposite sex urine from the same subspecies versus hybrids sampled in different locations across the zone. While no preference was evidenced in domesticus mice, musculus males discriminated in favour of musculus signals and against hybrid signals. Remarkably, the pattern of hybrid unattractiveness did not vary across the hybrid zone. Moreover, allopatric populations tested in the same conditions did not discriminate against hybrid signals, indicating character displacement for signal perception or preference. Finally, habituation-discrimination tests assessing similarities between signals pointed out that hybrid signals differed from the parental ones. Overall, our results suggest that perception of hybrids as unattractive has evolved in border populations of musculus after the secondary contact with domesticus. We discuss the mechanisms involved in hybrid unattractiveness, and the potential impact of asymmetric sexual selection on the hybrid zone dynamics and gene flow between the two subspecies.


Subject(s)
Gene Flow/genetics , Genetics, Population , Hybridization, Genetic/genetics , Mating Preference, Animal/physiology , Reproductive Isolation , Analysis of Variance , Animals , Hybridization, Genetic/physiology , Male , Mice , Smell/physiology , Species Specificity , Urine/chemistry
15.
Ecol Evol ; 2(5): 1008-23, 2012 May.
Article in English | MEDLINE | ID: mdl-22837845

ABSTRACT

The aim of this study was to characterize environmental differentiation of lineages within Rhabdomys and provide hypotheses regarding potential areas of contact between them in the Southern African subregion, including the Republic of South Africa, Lesotho, and Namibia. Records of Rhabdomys taxa across the study region were compiled and georeferenced from the literature, museum records, and field expeditions. Presence records were summarized within a 10 × 10 km grid covering the study area. Environmental information regarding climate, topography, land use, and vegetation productivity was gathered at the same resolution. Multivariate statistics were used to characterize the current environmental niche and distribution of the whole genus as well as of three mitochondrial lineages known to occur in southern Africa. Distribution modeling was carried out using MAXENT in order to generate hypotheses regarding current distribution of each taxa and their potential contact zones. Results indicate that the two species within Rhabdomys appear to have differentiated across the precipitation/temperature gradient present in the region from east to west. R. dilectus occupies the wettest areas in eastern southern Africa, while R. pumilio occupies the warmer and drier regions in the west, but also penetrates in the more mesic central part of the region. We provide further evidence of environmental differentiation within two lineages of R. dilectus. Contact zones between lineages appear to occur in areas of strong environmental gradients and topographic complexity, such as the transition zones between major biomes and the escarpment area where a sharp altitudinal gradient separates coastal and plateau areas, but also within more homogeneous areas such as within grassland and savannah biomes. Our results indicate that Rhabdomys may be more specialized than previously thought when considering current knowledge regarding mitochondrial lineages. The genus appears to have differentiated along two major environmental axes in the study region, but results also suggest dispersal limitations and biological interactions having a role in limiting current distribution boundaries. Furthermore, the projection of the potential geographic distribution of the different lineages suggests several contact zones that may be interesting study fields for understanding the interplay between ecological and evolutionary processes during speciation.

16.
Physiol Behav ; 82(2-3): 555-62, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15276822

ABSTRACT

Intolerance to familiar conspecifics characterises solitary mole-rats and distinguishes them from social ones. However, no study has compared the patterns of tolerance to unfamiliar conspecifics. Theoretically, both solitary and social species should react similarly and show intolerance to unfamiliar same-sex conspecifics, unless the evolution of grouping has favoured higher tolerance to conspecifics among the social species. Our study compares tolerance to unfamiliar conspecifics in four African mole-rat species exhibiting varying degrees of sociality. Dyadic encounters between female unfamiliar conspecifics were performed in a neutral arena, and the assessment of social tolerance was based on both behavioural observations of amicable contact behaviour as opposed to aggression and avoidance behaviour and the assessment of a stress response to the encounter measured as an increase in plasma cortisol concentrations. Our results show that the two highly social species and the solitary one presented similar high levels of agonistic behaviours during encounters with unfamiliar conspecifics. Nevertheless, all three social species displayed social tolerance and did not show a stress arousal during encounters with unfamiliar conspecifics, a pattern that contrasted significantly with that evidenced in the solitary species. The results suggest that physiological and behavioural characteristics allow a higher tolerance to unfamiliar conspecifics in the social as opposed to the solitary mole-rat, and the adaptive value of these characteristics are discussed. Finally, we discuss why constraints on social tolerance may be an important limiting factor to take into account in theories concerning the evolution of grouping.


Subject(s)
Agonistic Behavior , Mole Rats/psychology , Recognition, Psychology , Social Behavior , Analysis of Variance , Animals , Biological Evolution , Female , Reference Values , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...