Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Type of study
Publication year range
1.
Environ Sci Pollut Res Int ; 30(16): 47699-47711, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36745345

ABSTRACT

This present study investigated the removal of COD and ammoniacal nitrogen (NH4+-N) from tannery deliming wastewater (TDLWW) through microbes immobilized carbon consisted a bioreactor (MICCR) and reactive struvite crystallization process. Initially, 90% of the organic content of TDLWW was removed using a MICCR reactor at 24 h retention time. Nanoporous carbon (NPC) was used as the carrier matrix for the MICCR reactor. SEM and AFM images of NPC used in the MICCR reactor identify different microorganisms on its surface. The microbial profile of NPC used in the MICCR was analyzed, and the relative abundance is phyla Firmicutes, 25.64%; Proteobacteria, 43.68%; Bacteroidetes, 6.58%; Cyanobacteria, 2.22%; Actinobacteria, 2.34% reason for organic removal. The removal of organics follows the pseudo-second-order rate kinetics with the rate constant of 1.75 × 10-3 L COD-1 h-1. For the reactive struvite crystallization, MgO and Na2HPO4.2H2O were taken as the precipitating agents. The optimum molar ratio for the maximum conversion of NH4+-N into struvite was obtained as 1:1.4:1.4 (NH4+-N:MgO:Na2HPO4.2H2O). The volume of struvite precipitate was 48.5 mL/L of TDLWW, and the dry weight was 8.89 g/L. More than 93% of NH4+-N was converted as the struvite fertilizer. The conversion of NH4+-N into struvite follows the pseudo-first-order rate kinetics with the rate constant of 1.67 × 10-2 min-1. Despite the conversion of NH4+-N into struvite, COD removal was observed, which confirms the conversion of organic nitrogen into struvite. The struvite was evaluated using SEM, XRD, TGA, DSC, and FT-IR spectroscopic analysis. Hence, the integrated MICCR and the reactive struvite crystallization process can be applied to manage tannery deliming wastewater.


Subject(s)
Phosphates , Wastewater , Struvite/chemistry , Magnesium Oxide , Carbon , Spectroscopy, Fourier Transform Infrared , Nitrogen , Waste Disposal, Fluid/methods , Phosphorus
2.
Chemosphere ; 320: 138022, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739983

ABSTRACT

In conventional, the biologically treated tannery wastewaters are rich in dissolved organics and the application of reverse osmosis (RO) to biologically treated tannery wastewater was challenged with fouling and failure of RO membrane due to existence of lingering dissolved organic compounds. In present investigation the bacterial cell immobilized packed bed reactor (CIPBR) was operated to remove the dissolved organic compounds in biologically treated post-tanning wastewater to avoid membrane fouling in RO. The efficient microbial syndicate to eliminate dissolved organics in post-tanning wastewater was isolated and immobilized on to the carbon silica matrix (CSM) in the range of 2.98 ± 0.2 × 107 cells gm-1 of CSM and the same was used as a carrier matrix in the packed bed reactor. The CIPBR established the CODtot, CODdis and BOD removal efficiency by 61 ± 4%, 57 ± 4% and 87 ± 3% respectively with CODtot, CODdis and BOD remained in the treated wastewater as 236 ± 21 mg/L, 228 ± 21 mg/L, and 12 ± 3 mg/L under continuous operation. The removal of dissolved organic compounds from the post-tanning wastewater was confirmed using UV-Visible and FT-IR spectroscopic studies. Among the total microbial community, the phylum Proteobacteria played most abundant role with 48.47% of relative abundance for the removal of dissolved organics in biologically treated post-tanning wastewater. The significance of the study is to replace the tertiary treatment unit operation in the conventional ETP/CETP to remove dissolved organics in wastewater.


Subject(s)
Microbiota , Wastewater , Dissolved Organic Matter , Spectroscopy, Fourier Transform Infrared , Filtration , Carbon , Waste Disposal, Fluid/methods , Bioreactors/microbiology
3.
Environ Pollut ; 313: 120164, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36113645

ABSTRACT

Bioremediation of real-time petroleum refining industry oily waste (PRIOW) is a major challenge due to the poor emulsification potential and oil sludge disintegration efficiency of conventional bioamphiphile molecules. The present study was focused on the design of a covalently engineered supramolecular bioamphiphile complex (SUBC) rich in hydrophobic amino acids for proficient emulsification of hydrocarbons followed by the concomitant degradation of total petroleum hydrocarbons (TPH) in PRIOW using the hydrocarbonoclastic microbial bio-formulation system. The synthesis of SUBC was carried out by pH regulated microbial biosynthesis process and the yield was obtained to be 450.8 mg/g of petroleum oil sludge. The FT-IR and XPS analyses of SUBC revealed the anchoring of hydrophilic moieties of monomeric bioamphiphilic molecules, resulting in the formation of SUBC via covalent interaction. The SUBC was found to be lipoprotein in nature. The maximum loading capacity of SUBC onto surface modified rice hull (SMRH) was achieved to be 45.25 mg/g SMRH at the optimized conditions using RSM-CCD design. The SUBC anchored SMRH was confirmed using SEM, FT-IR, XRD and TGA analyses. The adsorption isotherm models of SUBC onto SMRH were performed. The integrated approach of SUBC-SMRH and hydrocarbonoclastic microbial bio-formulation system, emulsified oil from PRIOW by 92.86 ± 2.26% within 24 h and degraded TPH by 89.25 ± 1.75% within 4 days at the optimum dosage ratio of SUBC-SMRH (0.25 g): PRIOW (1 g): mass of microbial-assisted biocarrier material (0.05 g). The TPH degradation was confirmed by SARA fractional analysis, FT-IR, 1H NMR and GC-MS analyses. The study suggested that the application of covalently engineered SUBC has resulted in the accelerated degradation of real-time PRIOW in a very short duration without any secondary sludge generation. Thus, the SUBC integrated approach can be considered to effectively manage the hydrocarbon contaminants from petroleum refining industries under optimal conditions.


Subject(s)
Petroleum , Amino Acids , Biodegradation, Environmental , Hydrocarbons/metabolism , Industrial Waste , Petroleum/analysis , Sewage , Spectroscopy, Fourier Transform Infrared
4.
Environ Pollut ; 289: 117917, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34426191

ABSTRACT

Surface modified lipopeptide biosurfactant (BS) with enhancement of amino acids was produced using Bacillus Malacitensis. The aromatic hydrocarbons from contaminated soil were removed by BS soil washing process and bioremediation using activated functionalized carbon-BS matrix (AFC-BS). The Central Composite Design (CCD) showed the optimum time100 h; pH 7; temperature 30°C on maximum yield of BS. The amino acid profiling of BS reveals the enhancement of amino acids especially polar amino acids and its importance in the formation of micellar structure for the tight packing of aromatic hydrocarbons from industrial contaminated soil. AFC-BS matrix was implanted directly into the contaminated soil for 28 days and found 61.80 % of Total Petroleum Hydrocarbon (TPH) removal efficiency which is high compared to the AFC treated soil. The compounds were extracted from contaminated soil and AFC-BS matrix, found similar peaks in high performance liquid chromatography, which reveals the ability of BS to remove aromatic contaminants. The soil toxicity was also analyzed by seed germination and found improvement in the growth of seeds. The germination of seeds increased from 60 % to 100 % and the phytotoxicity of root and shoot was reduced from 89.50 %, 88.45 % to12.55 %, 11.87 % respectively.


Subject(s)
Hydrocarbons, Aromatic , Petroleum , Soil Pollutants , Amino Acids , Bacillus , Biodegradation, Environmental , Hydrocarbons , Petroleum/analysis , Soil , Soil Microbiology , Soil Pollutants/analysis , Surface-Active Agents
5.
Environ Sci Pollut Res Int ; 28(45): 64278-64294, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34302601

ABSTRACT

Chlorophenols are used in many industries for their importance in preservation and herbicide preparation even though they possess high-risk factors. The prolonged usage of these compounds makes it very complicated to remove them from water and soil by conventional treatment methods. Biosurfactant are the promising structures with the ability to remove contaminants effectively. In this work, an attempt has been made to eliminate 2,4-dichlorophenol from soil and water using amino acid-enhanced cationic biosurfactant obtained from Bacillus axarquiensis. The produced BS has the ability to reduce the surface tension to 30.0 mN m-1. From RSM, the optimum conditions for the maximum production of BS were obtained at time 95 h; pH 7; temperature 35 °C, and concentration of substrate 5%. The BS was immobilized using a solid support matrix for the stability. The environmental factors such as temperature and pH have no effect on the matrix used and found to be viable even under extreme conditions. The removal efficiency was achieved in the range of 93-96% from water and 80-85% from soil. Additionally, the recyclability and reusability of the matrix were also analyzed, and it withstands up to 8 cycles. As a result, the significance of biosurfactant by enhancing the amino acid content was explored in remediation technology.


Subject(s)
Soil , Surface-Active Agents , Bacillus , Biodegradation, Environmental , Water
6.
Environ Sci Pollut Res Int ; 27(1): 353-365, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31792794

ABSTRACT

The wastewater generated from fish processing industry contains a credible level of biodegradable proteins and low biodegradable fats, oils, and grease (FOG). The conventional biological treatment of fish processing wastewater (FPWW) containing high concentration of FOG faces the challenges of clogging, hindrance to sedimentation due to the formation of hydrophobic sludge along with lipids, flocculation of sludge with poor activity, dewatering of sludge due to the presence of lipids, and formation of aminated offensive odors. The present investigation employed baffled moving bed biofilm reactor (BMBBR), up-flow anaerobic sludge blanket (UASB) reactor, fluidized immobilized cell carbon oxidation (FICCO) reactor, and chemoautotrophic activated carbon oxidation (CAACO) reactors in series to treat FPWW. Five treatment options were evaluated to elevate the correct option for the treatment of FPWW. The treatment option V had established the removal efficiency of COD, 99 ± 0.1%; protein, 99 ± 0.2%; lipids, 100%; and oil and grease, 100%.


Subject(s)
Bioreactors , Food Handling , Waste Disposal, Fluid/methods , Anaerobiosis , Animals , Biofilms , Fishes , Oils , Seafood , Sewage/chemistry , Wastewater
7.
Environ Res ; 172: 408-419, 2019 05.
Article in English | MEDLINE | ID: mdl-30826663

ABSTRACT

The aim of this study was to degrade proteins in high-total dissolved solids (TDS)-containing wastewater produced during the soaking process in tanneries (tannery-TDS wastewater) using a halotolerant protease-assisted nanoporous carbon catalyst (STPNPAC). A halotolerant protease was obtained from the halophile, Lysinibacillus macroides, using animal fleshing as the substrate. The protease was immobilized using ethylene diamine (EDA)/glutaraldehyde functionalized nanoporous activated carbon (EGNPAC). The optimum conditions for the immobilization of protease were determined as time (120 min), pH (6), protease concentration (575-600 U/g), EGNPAC size, salinity, and temperature (30 °C). The immobilization was confirmed by FTIR, TGA-DSC, SEM, and XRD analyses. The adsorption kinetics was consistent with a pseudo first order rate constant of 1.43 × 10-2 min-1. The thermodynamic parameters (ΔG, ΔH, and ΔS) confirmed the effective immobilization of the protease onto EGNPAC. STPNAPC was found to efficiently degrade the proteins in tannery-TDS wastewater, with a complete fragmentation time of 90 min at pH 6 and 30 °C. Accordingly, the protein fragmentation was confirmed by UV-visible and UV-fluorescence spectroscopy, ESI-mass spectrometric analysis and circular dichroic studies. The formation of protein hydrolysates was confirmed by cyclic voltammetry and electrical impedance studies. BOD5: COD value, 0.426 of treated tannery-TDS wastewater may favor sequential biological treatment processes.


Subject(s)
Carbon , Peptide Hydrolases , Wastewater , Water Purification , Adsorption , Animals , Carbon/chemistry , Catalysis , Electrochemical Techniques , Industrial Waste , Kinetics , Spectrum Analysis , Thermodynamics , Wastewater/chemistry , Water Purification/methods
8.
Appl Biochem Biotechnol ; 187(2): 474-492, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29978288

ABSTRACT

The present investigation was carried out for the degradation of fatty components in high TDS containing wastewater (soak liquor) discharged from leather industry, and the degradation was achieved by saline-tolerant lipase-immobilized functionalized nanoporous-activated carbon (STLNPAC). The lipase was extracted from the halophilic organism, Bacillus cereus. The optimum conditions for lipase production such as time, 60 h; temperature, 50 °C; pH, 10; and substrate concentration, 2.5% (w/v) were determined through response surface methodology (RSM). The functionalization of NPAC was done by ethylenediamine/glutaraldehyde covalent interaction technique followed by the immobilization of saline-tolerant lipase onto FNPAC. The functional properties of STLNPAC were analyzed through instrumentation techniques such as TGA-DSC, FT-IR, XRD, and SEM images. The lipid content of soak liquor was removed by > 99% at HRT of 60 min using STLNPAC-packed bed reactor. The efficiency was evaluated by using UV-visible and FT-IR spectroscopic analyses. The degradation of lipids was best obeyed by pseudo first-order rate kinetics, and the rate constant was found to be 1.6 × 10-3 min-1. The biodegradability index of soak liquor was increased from 0.322 to 0.426, highly favorable for the complete removal of organic components in subsequent operations.


Subject(s)
Bacillus cereus/enzymology , Bacterial Proteins/chemistry , Charcoal/chemistry , Enzymes, Immobilized/chemistry , Fats/chemistry , Lipase/chemistry , Nanopores , Wastewater/chemistry , Water Purification/methods
9.
J Environ Sci (China) ; 67: 67-77, 2018 May.
Article in English | MEDLINE | ID: mdl-29778175

ABSTRACT

The present investigation deals with an application of integrated sequential oxic and anoxic bioreactor (SOABR) and fluidized immobilized cell carbon oxidation (FICCO) reactor for the treatment of domestic wastewater with minimum sludge generation. The performance of integrated SOABR-FICCO system was evaluated on treating the domestic wastewater at hydraulic retention time (HRT) of 3hr and 6hr for 120days at organic loading rate (OLR) of 191±31mg/(L·hr). The influent wastewater was characterized by chemical oxygen demand (COD) 573±93mg/L; biochemical oxygen demand (BOD5) 197±35mg/L and total suspended solids (TSS) 450±136mg/L. The integrated SOABR-FICCO reactors have established a significant removal of COD by 94%±1%, BOD5 by 95%±0.6% and TSS by 95%±4% with treated domestic wastewater characteristics COD 33±5mg/L; BOD5 9±0.8mg/L and TSS 17±9mg/L under continuous mode of operation for 120days. The mass of dry sludge generated from SOABR-FICCO system was 22.9g/m3. The sludge volume index of sludge formed in the SOABR reactor was 32mL/g and in FICCO reactor it was 46mL/g. The sludge formed in SOABR and FICCO reactor was characterized by TGA, DSC and SEM analysis. Overall, the results demonstrated that the integrated SOABR-FICCO reactors substantially removed the pollution parameters from domestic wastewater with minimum sludge production.


Subject(s)
Bioreactors , Waste Disposal, Fluid/methods , Anaerobiosis , Biological Oxygen Demand Analysis , Sewage/chemistry , Wastewater
10.
Biotechnol Appl Biochem ; 64(3): 364-384, 2017 May.
Article in English | MEDLINE | ID: mdl-26988244

ABSTRACT

The mixed intracellular enzyme (MICE) from Citrobacter freundii, capable of degrading o-phenylene diamine (OPD), was extracted and characterized. Cofactors such as zinc and copper ions enhanced the MICE activity. The functionalized nanoporous-activated carbon (FNAC) matrix, zinc-impregnated FNAC matrix (Zn2+ -FNAC), copper-impregnated FNAC matrix (Cu2+ -FNAC), and zinc- and copper-impregnated FNAC matrix (Zn2+ -Cu2+ -FNAC) were prepared and characterized to immobilize MICE. The parameters such as time (0-240 Min), pH (1-10), temperature (20-50 ºC), amount of MICE (1-5 mg), particle size of carbon (100-600 µm), and mass of carbon (0.5-2.5 g) were optimized for immobilization of MICE on different FNAC matrices. The carrier matrices in the free and MICE immobilized form were characterized using SEM, FT-IR, XPS, XRD, thermogravimetric analysis (TGA), and DSC analyses. The kinetic and adsorption models for the immobilization of MICE on FNAC matrices were studied. The parameters such as time, pH, temperature, concentration of OPD, and agitation speed were optimized for the degradation of OPD using FNAC-MICE and MICE-immobilized metal-impregnated FNAC matrices. The maximum amount of pyruvic acid formed was found to be 133 µg/mg of OPD using Zn2+ -Cu2+ -FNAC-MICE matrix. The kinetic models were studied for the formation of pyruvic acid on OPD degradation and confirmed using FT-IR spectroscopy.


Subject(s)
Bacterial Proteins/chemistry , Charcoal/chemistry , Citrobacter freundii/enzymology , Nanopores , Pyruvic Acid/chemistry , Copper/chemistry , Enzymes, Immobilized/chemistry , Zinc/chemistry
11.
Biodegradation ; 17(6): 559-70, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16477352

ABSTRACT

Dicarboxylic acid solid waste containing phthalic acid, malic acid, quinone, saturated and unsaturated dicarboxylic esters etc., are discharged in huge quantities during the crackdown of benzene over the catalyst vanadium at temperatures greater than 500 degrees C in a dicarboxylic acid manufacturing industry. Concern over the biological effects of these compounds underlines the necessity to treat this solid waste. The role of yeast Saccharomyces cerevisiae and anaerobic mixed bacterial cultures immobilized in activated carbon, in sequential two stage anoxic reactors, were investigated for the degradation of dicarboxylic acid solid waste (DASW). In the first stage, DASW was dissolved in water to yield a concentration of 0.5% w/v and was treated in yeast Saccharomyces cerevisiae immobilized reactor at an optimum residence time of 24 h. The yeast fermented samples were further treated in an upflow anaerobic reactor containing mixed culture immobilized in activated carbon at an Hydraulic Retention Time (HRT) of 0.2076 days at an hydraulic flow rate of 14.6x10(-3 )m(3)/day and Chemical Oxygen Demand (COD) loading rate of 4.3 kg/m(3)/day. The intermediates that were formed during the yeast fermentation and the anaerobic degradation of DASW were characterized by HPLC, proton NMR, C(13) NMR and mass spectrometry.


Subject(s)
Bioreactors/microbiology , Cells, Immobilized/metabolism , Dicarboxylic Acids/metabolism , Refuse Disposal/methods , Saccharomyces cerevisiae/metabolism , Adsorption , Anaerobiosis , Carbon Isotopes , Charcoal , Chromatography, High Pressure Liquid , Fatty Acids, Volatile/analysis , Fermentation , Nuclear Magnetic Resonance, Biomolecular , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...