Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Acta Cir Bras ; 38: e385623, 2023.
Article in English | MEDLINE | ID: mdl-38055383

ABSTRACT

PURPOSE: Diabetes mellitus is a serious health problem worldwide, and diabetic nephropathy is the complication. The diabetic nephropathy considerably enhances the oxidative stress, glycation, lipid parameters and inflammatory reaction. Ellipticine has potent free radical scavenging and anti-inflammatory effect. METHODS: In the current study, our objectives were to thoroughly examine the renal protective effects of ellipticine in a rat model of streptozotocin (STZ)-induced diabetic nephropathy (DN) and to elucidate the underlying mechanisms involved. For the induction of diabetic nephropathy, streptozotocin (50 mg/kg) was used, and rats were separated into groups and given varying doses of ellipticine (2.5, 5 and 7.5 mg/kg). The body weight, and renal weight were estimated. The inflammatory cytokines, renal biomarkers, inflammatory antioxidant, and urine parameters were estimated. RESULTS: Result showed that ellipticine considerably enhanced the body weight and reduced the renal tissue weight. Ellipticine treatment significantly (P < 0.001) repressed the level of blood urea nitrogen, serum creatinine, uric acid, blood glucose and altered the lipid parameters. Ellipticine significantly (P < 0.001) repressed the level of malonaldehyde and boosted the glutathione, catalase, superoxide dismutase, and glutathione peroxidase. Ellipticine treatment significantly (P < 0.001) reduced the inflammatory cytokines and inflammatory mediators. CONCLUSIONS: Ellipticine could be a renal protective drug via attenuating the inflammatory reaction, fibrosis and oxidative stress in streptozotocin induced rats.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Ellipticines , Rats , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Diabetic Nephropathies/metabolism , Streptozocin/metabolism , Streptozocin/pharmacology , Streptozocin/therapeutic use , Ellipticines/metabolism , Ellipticines/pharmacology , Ellipticines/therapeutic use , Kidney , Oxidative Stress , Cytokines/metabolism , Inflammation Mediators/metabolism , Body Weight , Diabetes Mellitus/metabolism
2.
Environ Toxicol ; 38(8): 1786-1799, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37148149

ABSTRACT

Acute Lung Injury (ALI) is a critical medical condition that induces the injury into the lung tissue, resulting in decreased the oxygen levels in the circulation and finally causes the respiratory failure. In this study, we try to made effort for scrutinized the preventive effect of gossypin against lipopolysaccharide (LPS) induced lung inflammation and explore the underlying mechanism. LPS (7.5 mg/kg) was used for induction the lung inflammation in the rats and rats were received the oral administration of gossypin (5, 10 and 15 mg/kg). The wet to dry weight lung ratio and lung index were estimated. The bronchoalveolar lavage fluid (BALF) were collected to determination the inflammatory cells, total protein, macrophages and neutrophils. ELISA kits were used for the estimation of antioxidant, inflammatory cytokines, inflammatory parameters, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) parameters. Finally, we used the lung tissue for scrutinize the alteration in the lung histopathology. Gossypin treatment significantly (p < .001) reduced the W/D ratio of lung tissue and lung index. Gossypin significantly (p < .001) decreased the total cells, neutrophils, macrophages and total protein in BALF. It is also altered the level of inflammatory cytokines, antioxidant and inflammatory parameters, respectively. Gossypin improved the level of Nrf2 and HO-1 at dose dependent manner. Gossypin treatment remarkably enhance the ALI severity via balancing the structural integrity of lung tissue, decrease the thickness of the alveolar wall, decline the pulmonary interstitial edema, and number of inflammatory cells in the lung tissue. Gossypin is a promising agent for the treatment of LPS induced lung inflammation via altering Nrf2/HO-1 and NF-κB.


Subject(s)
Acute Lung Injury , Pneumonia , Rats , Animals , NF-kappa B/metabolism , Lipopolysaccharides/toxicity , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/metabolism , Signal Transduction , Lung , Acute Lung Injury/metabolism , Pneumonia/pathology , Cytokines/metabolism , Inflammation/metabolism
3.
Acta cir. bras ; 38: e385623, 2023. graf
Article in English | LILACS, VETINDEX | ID: biblio-1527589

ABSTRACT

Purpose: Diabetes mellitus is a serious health problem worldwide, and diabetic nephropathy is the complication. The diabetic nephropathy considerably enhances the oxidative stress, glycation, lipid parameters and inflammatory reaction. Ellipticine has potent free radical scavenging and anti-inflammatory effect. Methods: In the current study, our objectives were to thoroughly examine the renal protective effects of ellipticine in a rat model of streptozotocin (STZ)-induced diabetic nephropathy (DN) and to elucidate the underlying mechanisms involved. For the induction of diabetic nephropathy, streptozotocin (50 mg/kg) was used, and rats were separated into groups and given varying doses of ellipticine (2.5, 5 and 7.5 mg/kg). The body weight, and renal weight were estimated. The inflammatory cytokines, renal biomarkers, inflammatory antioxidant, and urine parameters were estimated. Results: Result showed that ellipticine considerably enhanced the body weight and reduced the renal tissue weight. Ellipticine treatment significantly (P < 0.001) repressed the level of blood urea nitrogen, serum creatinine, uric acid, blood glucose and altered the lipid parameters. Ellipticine significantly (P < 0.001) repressed the level of malonaldehyde and boosted the glutathione, catalase, superoxide dismutase, and glutathione peroxidase. Ellipticine treatment significantly (P < 0.001) reduced the inflammatory cytokines and inflammatory mediators. Conclusions: Ellipticine could be a renal protective drug via attenuating the inflammatory reaction, fibrosis and oxidative stress in streptozotocin induced rats.


Subject(s)
Animals , Rats , Streptozocin , Oxidative Stress , Diabetic Nephropathies , Ellipticines , Inflammation , Antioxidants
4.
Plant Pathol J ; 38(6): 646-655, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36503193

ABSTRACT

Pepper mild mottle virus (PMMoV), one of the most prevalent viruses in chili pepper (Capsicum annuum L.) is a non-enveloped, rod-shaped, single-stranded positive-sense RNA virus classified in the genus Tobamovirus. The supernatants of five bacterial cultures (Pseudomonas putida [PP], Bacillus licheniformis [BLI], P. fluorescens [PF], Serratia marcescens [SER], and B. amyloliquifaciens [BA]) were analyzed to find novel antiviral agents to PMMoV in chili pepper. Foliar spraying with supernatants (1:1, v/v) obtained from Luria-Bertani broth cultures of PP, BLI, PF, SER, and BA inhibited PMMoV infection of chili pepper if applied before the PMMoV inoculation. Double-antibody sandwich enzyme-linked immunosorbent assay showed that treatments of five supernatants resulted in 51-66% reductions in PMMoV accumulation in the treated chili pepper. To identify key compounds in supernatants of PP, BLI, PF, SER, and BA, the supernatants were subjected to gas chromatography-mass spectrometry. The 24 different types of compounds were identified from the supernatants of PP, BLI, PF, SER, and BA. The compounds vary from supernatants of one bacterial culture to another which includes simple compounds-alkanes, ketones, alcohols, and an aromatic ring containing compounds. The compounds triggered the inhibitory effect on PMMoV propagation in chili pepper plants. In conclusion, the cultures could be used to further conduct tissue culture and field trial experiments as potential bio-control agents.

5.
J King Saud Univ Sci ; 34(5): 102125, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35663349

ABSTRACT

Objective: Surgical face masks have been recommended by World Health Organization (WHO) during the COVID-19 pandemic. Nowadays wearing masks have become a norm and lifestyle around the globe. The present investigation was carried out to evaluate the feasibility of developing masks loaded with analytical grade sodium chloride (NaCl), Iodized salts (IS) and Omani sea salt (OSS) with or without sodium bicarbonate (NaHCO3). Methods: The saline loaded masks were prepared by soaking the middle layer of the mask in 30% (w/v) saline solutions (NaCl, IS, OSS) with or without 10% NaHCO3 for 24 h followed by drying at room temperature. The prepared saline solutions and its combinations were evaluated for antimicrobial efficacy against the bacteria like Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhi, and Staphylococcus aureus, and antifungal activity against the Penicillium spp. and Rhizopus spp. by agar diffusion. Optical microscopy was employed to observe the formation of salt crystal in the mask material. Survivability of S. aureus and P. aeruginosa was tested on the mask material loaded with 30% OSS + 10% NaHCO3 at particular time intervals. Results: The results showed that a combination of 30% OSS + 10% NaHCO3 exhibited promising antimicrobial activity against all the bacteria as well as Rhizopus spp. compared to the 30% IS + 10% NaHCO3. Moreover, the middle layer of the mask loaded with saline solutions of 30% OSS + 10% NaHCO3 or 30% IS + 10% NaHCO3 have antibacterial activity, particularly for oral microbiome. On dehydration, the masks materials showed the presence of a significant amount of salt crystals. Survivability tests showed that both S. aureus and P. aeruginosa were killed within 3 h of contact with the salt crystals on the mask materials. Conclusions: A combination of 30% OSS + 10% NaHCO3 possessed significant antimicrobial activities on the tested microorganisms. Presence of a significant amount of salt crystals on dehydration of the saline loaded masks can be used as an effective protective barrier to infectious respiratory agents.

6.
Plant Pathol J ; 37(6): 632-640, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34897254

ABSTRACT

Cucumber mosaic virus (CMV) and Pepper mild mottle virus (PMMoV) causes severe economic loss in crop productivity of both agriculture and horticulture crops in Korea. The previous surveys showed that naturally available biopolymer material - chitosan (CS), which is from shrimp cells, reduced CMV accumulation on pepper. To improve the antiviral activity of CS, it was synthesized to form phosphate cross-linked chitosan (PCS) and compared with the original CS. Initially, the activity of CS and PCS (0.01%, 0.05%, and 0.1% concentration) compound against PMMoV infection and replication was tested using a half-leaf assay on Nicotiana glutinosa leaves. The total number of local lesions represented on a leaf of N. glutinosa were counted and analyzed with phosphate buffer treated leaves as a negative control. The leaves treated with a 0.1% concentration of CS or PCS compounds exhibited an inhibition effect by 40-75% compared with the control leaves. The same treatment significantly reduced about 40% CMV accumulation measured by double antibody sandwich enzyme-linked immunosorbent assay and increased the relative expression levels of the NPR1, PR-1, cysteine protease inhibitor gene, LOX, PAL, SRC2, CRF3 and ERF4 genes analyzed by quantitative reverse transcriptase-polymerase chain reaction, in chili pepper plants.

7.
Environ Sci Eur ; 29(1): 11, 2017.
Article in English | MEDLINE | ID: mdl-28316900

ABSTRACT

BACKGROUND: The extensive and intensive uses of organophosphorus insecticide-quinalphos in agriculture, pose a health hazard to animals, humans, and environment because of its persistence in the soil and crops. However, there is no much information available on the biodegradation of quinalphos by the soil micro-organisms, which play a significant role in detoxifying pesticides in the environment; so research is initiated in biodegradation of quinalphos. RESULTS: A soil bacterium strain, capable of utilizing quinalphos as its sole source of carbon and energy, was isolated from soil via the enrichment method on minimal salts medium (MSM). On the basis of morphological, biochemical and 16S rRNA gene sequence analysis, the bacterium was identified as to be Bacillus thuringiensis. Bacillus thuringiensis grew on quinalphos with a generation time of 28.38 min or 0.473 h in logarithmic phase. Maximum degradation of quinalphos was observed with an inoculum of 1.0 OD, an optimum pH (6.5-7.5), and an optimum temperature of 35-37 °C. Among the additional carbon and nitrogen sources, the carbon source-sodium acetate and nitrogen source-a yeast extract marginally improved the rate of degradation of quinalphos. CONCLUSIONS: Display of degradation of quinalphos by B. thuringiensis in liquid culture in the present study indicates the potential of the culture for decontamination of quinalphos in polluted environment sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...