Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Free Radic Res ; 58(3): 217-228, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38572725

ABSTRACT

Ferroptosis has been characterized as a form of iron-dependent regulated cell death accompanied by an accumulation of reactive oxygen species and lipid oxidation products along with typical morphological alterations in mitochondria. Ferroptosis is activated by diverse triggers and inhibited by ferrostatin-1 and liproxstatin-1, apart from iron chelators and several antioxidants, and the process is implicated in multiple pathological conditions. There are, however, certain ambiguities about ferroptosis, especially regarding the final executioner of cell death subsequent to the accumulation of ROS. This study uses a typical inducer of ferroptosis such as erastin on SH-SY5Y cells, and shows clearly that ferroptotic death of cells is accompanied by the loss of mitochondrial membrane potential and intracellular ATP content along with an accumulation of oxidative stress markers. All these are prevented by ferrostatin-1 and liproxstatin-1. Additionally, cyclosporine A prevents mitochondrial alterations and cell death induced by erastin implying the crucial role of mitochondrial permeability transition pore (mPTP) activation in ferroptotic death. Furthermore, an accumulation of α-synuclein occurs during erastin induced ferroptosis which can be inhibited by ferrostatin-1 and liproxstatin-1. When the knock-down of α-synuclein expression is performed by specific siRNA treatment of SH-SY5Y cells, the mitochondrial impairment and ferroptotic death of the cells induced by erastin are markedly prevented. Thus, α-synuclein through the involvement of mPTP appears to be the key executioner protein of ferroptosis induced by erastin, but it needs to be verified if it is a generalized mechanism of ferroptosis by using other inducers and cell lines.


Subject(s)
Ferroptosis , Mitochondria , Piperazines , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Cell Death/drug effects , Cell Line, Tumor , Ferroptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Piperazines/pharmacology , Reactive Oxygen Species/metabolism
2.
Pharmacol Rep ; 75(2): 482-489, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36849757

ABSTRACT

BACKGROUND: Inhibitors of glucose transporters are being explored as potential anti-cancer drugs. Decreased cerebral glucose utilization with reduced levels of several glucose transporters is also an important pathogenic signature of neurodegeneration of Alzheimer's disease, but its exact role in the pathogenesis of this disease is not established. We explored in an experimental model if inhibitors of glucose transporters could lead to altered amyloid-beta homeostasis, mitochondrial dysfunction, and neuronal death, which are relevant in the pathogenesis of Alzheimer's disease. METHODS: SH-SY5Y cells (human neuroblastoma cell line) were exposed to an inhibitor (WZB117) of several types of glucose transporters. We examined the effects of glucose hypometabolism on SH-SY5Y cells in terms of mitochondrial functions, production of reactive oxygen species, amyloid-beta homeostasis, and neural cell death. The effect of ß-hydroxybutyrate in ameliorating the effects of WZB117 on SH-SY5Y cells was also examined. RESULTS: We observed that exposure of SH-SY5Y cells to WZB117 caused mitochondrial dysfunction, increased production of reactive oxygen species, loss of cell viability, increased expression of BACE 1, and intracellular accumulation of amyloid ß peptide (Aß42). All the effects of WZB117 could be markedly prevented by co-treatment with ß-hydroxybutyrate. Cyclosporine A, a blocker of mitochondrial permeability transition pore (mPTP) activation, could not prevent cell death caused by WZB117. CONCLUSION: Results in this neuroblastoma model have implications for the pathogenesis of Alzheimer's disease and warrant further explorations of WZB117 in primary cultures of neurons and experimental animal models.


Subject(s)
Alzheimer Disease , Neuroblastoma , Animals , Humans , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Alzheimer Disease/drug therapy , 3-Hydroxybutyric Acid/pharmacology , 3-Hydroxybutyric Acid/therapeutic use , Reactive Oxygen Species/metabolism , Glucose , Cell Line, Tumor , Peptide Fragments/metabolism
3.
Eur J Pharmacol ; 929: 175129, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35777442

ABSTRACT

The development of neuroprotective drugs targeting mitochondria could be an important strategy in combating the progressive clinical course of Parkinson's disease. In the current study, we demonstrated that in SH-SY5Y cells (human dopaminergic neuroblastoma cell line), rotenone caused a dose-dependent (0.25-1 µM) and time-dependent (up to 48 h) loss of cell viability and a loss of cellular ATP content with mitochondrial membrane depolarization and an increased formation of reactive oxygen species; all these processes were markedly prevented by the mitochondrial permeability transition pore blocker cyclosporine A, which did not affect complex I inhibition by rotenone. The nuclear morphology of rotenone-treated cells for 48 h indicated the presence of both necrosis and apoptosis. We then examined the effects of cyclosporine A on the rotenone-induced model of Parkinson's disease in Wistar rats. Cyclosporine A significantly improved the motor deficits and prevented the loss of nigral dopaminergic neurons projecting into the striatum in rotenone-treated rats. Being a marketed immuno-suppressive drug, cyclosporine A should be further evaluated for its putative neuroprotective action in Parkinson's disease.


Subject(s)
Motor Disorders , Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Animals , Cyclosporine/pharmacology , Humans , Models, Theoretical , Motor Disorders/drug therapy , Neuroblastoma/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Rats , Rats, Wistar , Rotenone/toxicity
4.
Adv Protein Chem Struct Biol ; 129: 381-433, 2022.
Article in English | MEDLINE | ID: mdl-35305723

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized classically by motor manifestations. However, nonmotor symptoms appear early in the course of the disease progression, making both diagnosis and treatment difficult. The pathology of PD is complicated by the accumulation and aggregation of misfolded proteins in intracellular cytoplasmic inclusions called Lewy bodies (LBs). The main toxic component of LBs is the protein α-Synuclein which plays a pivotal role in PD pathogenesis. α-Synuclein can propagate from cell-to-cell exhibiting prion-like properties and spread PD pathology throughout the central nervous system. Immunotherapeutic interventions in PD, both active and passive immunization, have targeted α-Synuclein in both experimental models and clinical trials. In addition, targeting the hyperactive inflammation in PD also holds promise in designing potential immunotherapeutics. The inflammatory and proteotoxic pathways are interlinked and contribute immensely to the disease pathology. In this chapter, we critically review the targets of immunotherapeutic interventions in PD, focusing on the pathogenetic mechanisms of PD, particularly neuroinflammation and α-Synuclein misfolding, aggregation, and propagation. We thoroughly summarized the various immunotherapeutic strategies designed to treat PD-in vitro, in vivo, and clinical trials. The development of these targeted immunotherapies could open a new avenue in the treatment of patients with PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , Immunotherapy , Lewy Bodies/metabolism , Lewy Bodies/pathology , Parkinson Disease/metabolism , alpha-Synuclein/metabolism
5.
Clin Ophthalmol ; 15: 3341-3350, 2021.
Article in English | MEDLINE | ID: mdl-34408392

ABSTRACT

PURPOSE: In the present study, we aimed to evaluate the efficacy, safety, and cost-effectiveness of the anti-vascular endothelial growth factor (anti-VEGF), namely ranibizumab (RBZ) or bevacizumab (BVZ), after either focal or grid or scatter laser photocoagulation, for the treatment of diabetic macular edema (DME) in the Indian population. METHODS: Retrospective data were collected in the Regional Institute of Ophthalmology, Kolkata, India between January 2018 and June 2019. Seventy-seven eyes received 3 consecutive monthly intravitreal injections of RBZ (0.5 mg) and were followed by prompt laser photocoagulation (within 7-10 days after the third injection). Similarly, 51 eyes received 3 consecutive monthly intravitreal injections of BVZ (1.25 mg), an off-label drug, and were followed by prompt laser therapy. Safety assessments of the therapy, as well as surrogate markers of biochemical derangements related to diabetic retinopathy (DR), were also investigated at the end of 12 months. RESULTS: Seventy-seven subjects who were given a treatment of RBZ+laser therapy showed average 6.87±5.53 letters gain in their best-corrected visual acuity (BCVA) score, whereas the ones treated with off-label BVZ+ laser therapy demonstrated improvement in BCVA of an average 6.82±5.76 letters in "Early Treatment Diabetic Retinopathy Study" (ETDRS) chart. The study also highlights the cost-effectiveness of both RBZ+laser and BVZ+laser therapies for the treatment of DME in DR. The results demonstrated that a subject has to pay 20.951 times more cost (in INR) for RBZ+laser therapy compared to BVZ+laser therapy, to get an almost similar outcome. CONCLUSION: BVZ is found to be the more attractive option for treating DME in DR for its cost-friendliness over RBZ in terms of BCVA outcome, as well as the safety perspectives, at least for the economically backward population in developing countries, like India.

6.
Front Aging Neurosci ; 13: 702639, 2021.
Article in English | MEDLINE | ID: mdl-34305577

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder of the elderly, presenting primarily with symptoms of motor impairment. The disease is diagnosed most commonly by clinical examination with a great degree of accuracy in specialized centers. However, in some cases, non-classical presentations occur when it may be difficult to distinguish the disease from other types of degenerative or non-degenerative movement disorders with overlapping symptoms. The diagnostic difficulty may also arise in patients at the early stage of PD. Thus, a biomarker could help clinicians circumvent such problems and help them monitor the improvement in disease pathology during anti-parkinsonian drug trials. This review first provides a brief overview of PD, emphasizing, in the process, the important role of α-synuclein in the pathogenesis of the disease. Various attempts made by the researchers to develop imaging, genetic, and various biochemical biomarkers for PD are then briefly reviewed to point out the absence of a definitive biomarker for this disorder. In view of the overwhelming importance of α-synuclein in the pathogenesis, a detailed analysis is then made of various studies to establish the biomarker potential of this protein in PD; these studies measured total α-synuclein, oligomeric, and post-translationally modified forms of α-synuclein in cerebrospinal fluid, blood (plasma, serum, erythrocytes, and circulating neuron-specific extracellular vesicles) and saliva in combination with certain other proteins. Multiple studies also examined the accumulation of α-synuclein in various forms in PD in the neural elements in the gut, submandibular glands, skin, and the retina. The measurements of the levels of certain forms of α-synuclein in some of these body fluids or their components or peripheral tissues hold a significant promise in establishing α-synuclein as a definitive biomarker for PD. However, many methodological issues related to detection and quantification of α-synuclein have to be resolved, and larger cross-sectional and follow-up studies with controls and patients of PD, parkinsonian disorders, and non-parkinsonian movement disorders are to be undertaken.

7.
Oxid Med Cell Longev ; 2021: 7086512, 2021.
Article in English | MEDLINE | ID: mdl-33953837

ABSTRACT

NADPH oxidase as an important source of intracellular reactive oxygen species (ROS) has gained enormous importance over the years, and the detailed structures of all the isoenzymes of the NADPH oxidase family and their regulation have been well explored. The enzyme has been implicated in a variety of diseases including neurodegenerative diseases. The present brief review examines the body of evidence that links NADPH oxidase with the genesis and progression of Alzheimer's disease (AD). In short, evidence suggests that microglial activation and inflammatory response in the AD brain is associated with increased production of ROS by microglial NADPH oxidase. Along with other inflammatory mediators, ROS take part in neuronal degeneration and enhance the microglial activation process. The review also evaluates the current state of NADPH oxidase inhibitors as potential disease-modifying agents for AD.


Subject(s)
Alzheimer Disease/genetics , Inflammation Mediators/physiology , NADPH Oxidases/metabolism , Oxidative Stress/genetics , Animals , Humans , Mice , Rats
8.
Mult Scler Relat Disord ; 51: 102917, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33845350

ABSTRACT

BACKGROUND: Spinal cord complications associated with coronavirus infectious disease of 2019 (COVID-19) are being widely reported. The purpose of this systematic review was to summarize so far available pieces of evidence documenting de novo novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) mediated spinal cord demyelinating diseases. Indeed, the spinal demyelinating disorders that have been reported in those patients who have suffered from COVID-19 rather than on the people already living with diagnosed or undiagnosed primary demyelinating disorders. METHODS: We used the existing PRISMA consensus statement. Data were collected from PubMed, NIH Litcovid, EMBASE and Cochrane library databases, as well as Pre-print servers (medRxiv, bioRxiv, and pre-preints.org), until September 10, 2020, using pre-specified searching strategies. RESULTS: The 21 selected articles were all case reports and included 11 (52%) men and 10 (48%) women. The mean age was of 46.7 ±â€¯18.0. The neurological manifestations included weakness, sensory deficit, autonomic dysfunction and ataxia. In most cases, elevated cerebrospinal fluid protein as well as lymphocytic pleocytosis were found. SARS-CoV-2 was detected in five (24%) patients, meanwhile in 13 (62%) patients, the testing was negative. Testing was not performed in two cases and, in one, data were unavailable. Nearly half of the cases (N = 9) were associated with isolated long extensive transverse myelitis (LETM), whereas a combination of both LETM and patchy involvement was found in two. Only five patients had isolated short segment involvement and two patchy involvement. Furthermore, concomitant demyelination of both brain and spine was reported in six patients. Concerning the prognosis, most of the patients improved and the mortality rate was low (N = 2, <10%). CONCLUSION: Spinal cord demyelination should be added to the plethora of immune mediated neurologic complications associated with COVID-19.


Subject(s)
COVID-19 , Communicable Diseases , Nervous System Diseases , Female , Humans , Male , SARS-CoV-2 , Spinal Cord
10.
Expert Rev Anti Infect Ther ; 19(10): 1245-1258, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33739215

ABSTRACT

Introduction: COVID-19 pandemic has caused huge loss of human lives and extensive socio-economic damages. The immuno-pathology of this disease is neither clearly understood nor there are effective drugs for severe cases of COVID-19. Repurposing of available drugs for the treatment of COVID-19 is imperative.Areas Covered: This review has gathered the evidence from PubMed, Google Scholar, WHO, and other reliable websites on COVID-19 and summarized the existing knowledge of the immuno-pathology of COVID-19. We elucidated how vitamin D through its diverse actions on immune effector cells, epithelial cells, or renin-angiotensin-aldosterone system could have a modulatory role on the pathogenic mechanisms of COVID-19. The epidemiological evidence associating vitamin D deficiency with the severity and incidence of COVID-19 is also presented. However, the evidence of clinical benefit to patients of COVID-19 from randomized controlled trials with vitamin D has not come as yet.Expert opinion: It is now established that fatality of COVID-19 is primarily determined by hyperactivation of the host's innate immune system in response to SARS-CoV-2 invasion, and thus the research on the immuno-modulatory and other roles of vitamin D against viral infections should be pursued vigorously. This would be also useful for future pandemics caused by other novel viruses.


Subject(s)
COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Vitamin D/immunology , Vitamin D/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , Comorbidity , Humans , Immunity, Innate , Immunomodulation/drug effects , Renin-Angiotensin System/drug effects , SARS-CoV-2/physiology , Severity of Illness Index , Virus Replication , Vitamin D/therapeutic use , Vitamin D Deficiency/epidemiology , COVID-19 Drug Treatment
11.
J Neurovirol ; 27(1): 12-25, 2021 02.
Article in English | MEDLINE | ID: mdl-33367960

ABSTRACT

With the growing number of COVID-19 cases in recent times. significant set of patients with extra pulmonary symptoms has been reported worldwide. Here we venture out to summarize the clinical profile, investigations, and radiological findings among patients with SARS-CoV-2-associated meningoencephalitis in the form of a systemic review. This review was carried out based on the existing PRISMA (Preferred Report for Systematic Review and Meta analyses) consensus statement. The data for this review was collected from four databases: Pubmed/Medline, NIH Litcovid, Embase, and Cochrane library and Preprint servers up till 30 June 2020. Search strategy comprised of a range of keywords from relevant medical subject headings which includes "SARS-COV-2," "COVID-19," and "meningoencephalitis." All peer reviewed, case-control, case report, pre print articles satisfying our inclusion criteria were involved in the study. Quantitative data was expressed in mean ± SD, while the qualitative date in percentages. Paired t test was used for analysing the data based on differences between mean and respective values with a p < 0.05 considered to be statistically significant. A total of 61 cases were included from 25 studies after screening from databases and preprint servers, out of which 54 of them had completed investigation profile and were included in the final analysis. Clinical, laboratory findings, neuroimaging abnormalities, and EEG findings were analyzed in detail. This present review summarizes the available evidences related to the occurrence of meningoencephalitis in COVID-19.


Subject(s)
COVID-19/physiopathology , Cough/physiopathology , Fatigue/physiopathology , Fever/physiopathology , Meningoencephalitis/physiopathology , SARS-CoV-2/pathogenicity , Adult , Aged , Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19/diagnostic imaging , COVID-19/virology , Confusion/diagnostic imaging , Confusion/drug therapy , Confusion/physiopathology , Confusion/virology , Cough/diagnostic imaging , Cough/drug therapy , Cough/virology , Dyspnea/diagnostic imaging , Dyspnea/drug therapy , Dyspnea/physiopathology , Dyspnea/virology , Electroencephalography , Fatigue/diagnostic imaging , Fatigue/drug therapy , Fatigue/virology , Female , Fever/diagnostic imaging , Fever/drug therapy , Fever/virology , Humans , Hydroxychloroquine/therapeutic use , Male , Meningoencephalitis/diagnostic imaging , Meningoencephalitis/drug therapy , Meningoencephalitis/virology , Middle Aged , Neuroimaging , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
12.
Heliyon ; 6(10): e05336, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33145449

ABSTRACT

The present study aimed to explore the early predictive marker of diabetic retinopathy (DR) and to elucidate the associated demographic, metabolic, and ocular factors. We enrolled 43 type 2 diabetic subjects with mild non-proliferative retinopathy (MNPDR), 30 diabetic subjects with no retinopathy (DNR), and 35 healthy controls (HC). The study groups showed no significant alteration in central macular thickness (CMT) and visual acuity (VA). The contrast sensitivity (CS) score was found to be significantly lower among DNR and MNPDR subjects compared to HCs (p < 0.0001). Between MNPDR and DNR subjects, the CS score was significantly lower in the former (p = 0.0036). CS score discriminated DNR subjects from HC, with 74% accuracy for the optimal threshold 0.71. The associated area under the ROC curve (AUC) is 0.82 (p < 0.0001) while the discrimination rule has 66% sensitivity and 80% specificity. The CS score also discriminated MNPDR subjects from DNR with 64% accuracy for the optimal threshold 0.53. The associated AUC is 0.65 (p < 0.023) and the rule has 86% sensitivity and 33% specificity. According to best subset regression analysis, not only glycaemic parameters but also lipid parameters [low-density lipoprotein cholesterol (LDL-C) (p = 0.045) and triglycerides (TG) (p = 0.0005)] were found to be significant predictors of CS. CMT (p = 0.058) was another marginally significant predictor of CS. CS may be used as an early predictive marker for DR. So, not only hyperglycemia, but also hyperlipidemia seems to significantly affect retinal CS function in diabetes.

13.
Aging Dis ; 11(3): 480-488, 2020 May.
Article in English | MEDLINE | ID: mdl-32489695

ABSTRACT

The ongoing Corona virus (COVID-19) pandemic has witnessed global political responses of unimaginable proportions. Many nations have implemented lockdowns that involve mandating citizens not to leave their residences for non-essential work. The Indian government has taken appropriate and commendable steps to curtail the community spread of COVID-19. While this may be extremely beneficial, this perspective discusses the other reasons why COVID-19 may have a lesser impact on India. We analyze the current pattern of SARS-CoV-2 transmission, testing, and mortality in India with an emphasis on the importance of mortality as a marker of the clinical relevance of COVID-19 disease. We also analyze the environmental and biological factors which may lessen the impact of COVID-19 in India. The importance of cross-immunity, innate immune responses, ACE polymorphism, and viral genetic mutations are discussed.

14.
Biochem J ; 477(6): 1109-1122, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32108853

ABSTRACT

The toxicity of accumulated α-synuclein plays a key role in the neurodegeneration of Parkinson's disease (PD). This study has demonstrated that iron in varying concentrations (up to 400 µM) causes an increase in α-synuclein content in SH-SY5Y cells associated with mitochondrial depolarization, decreased cellular ATP content and loss of cell viability during incubation up to 96 h. Knocking-down α-synuclein expression prevents cytotoxic actions of iron, which can also be prevented by cyclosporine A (a blocker of mitochondrial permeability transition pore). These results indicate that iron cytotoxicity is mediated by α-synuclein acting on mitochondria. Likewise siRNA mediated knock-down of Parkin causes an accumulation of α-synuclein accompanied by mitochondrial dysfunction and cell death during 48 h incubation under basal conditions, but these changes are not further aggravated by co-incubation with iron (400 µM). We have also analyzed mitochondrial dysfunction and cell viability in SH-SY5Y cells under double knock-down (α-synuclein and Parkin concurrently) conditions during incubation for 48 h with or without iron. Our results tend to suggest that iron inactivates Parkin in SH-SY5Y cells and thereby inhibits the proteasomal degradation of α-synuclein, and the accumulated α-synuclein causes mitochondrial dysfunction and cell death. These results have implications in the pathogenesis of sporadic PD and also familial type with Parkin mutations.


Subject(s)
Iron/toxicity , Parkinson Disease/metabolism , Protein Interaction Domains and Motifs/physiology , Ubiquitin-Protein Ligases/metabolism , alpha-Synuclein/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Humans , Protein Interaction Domains and Motifs/drug effects
15.
Neuromolecular Med ; 22(1): 150-158, 2020 03.
Article in English | MEDLINE | ID: mdl-31628580

ABSTRACT

The present study demonstrates the efficacies of synthetic 1,8-cineole and an 1,8-cineole-rich supercritical carbon dioxide (SC-CO2) extract of small cardamom seeds in preventing oligomerization of amyloid beta peptide (Aß42) and inhibiting iron-dependent oxyradical production in vitro. The oligomerization of Aß42 was monitored by thioflavin T assay and MALDI-TOF analysis of the oligomers. The iron-dependent production of oxygen free radicals was detected by fluorometric benzoate hydroxylation assay. We observed that both pure 1,8-cineole and 1,8-cineole-rich extract of small cardamom seeds at concentrations of 50 µM and 100 µM prevented the production of reactive hydroxyl radicals from a mixture of Fe2+ and ascorbate. However, the 1,8-cineole-rich extract of small cardamom seeds prevented in vitro Aß42 oligomerization more effectively vis-à-vis the synthetic (99% pure) 1,8-cineole. Additional study on SHSY5Y cells indicated that both pure 1,8-cineole and 1,8-cineole-rich SC-CO2 extract of small cardamom seeds prevented iron-dependent cell death. Since oxidative damage, Aß42 aggregation and loss of cell viability (iron-induced) are characteristics of onset of Alzheimer's disease pathology, our results suggest a putative therapeutic role of 1,8-cineole-rich extract of small cardamom seeds over pure 1,8-cineole in preventing this neurodegenerative disease.


Subject(s)
Alzheimer Disease/prevention & control , Elettaria/chemistry , Eucalyptol/therapeutic use , Ferroptosis/drug effects , Plant Extracts/therapeutic use , Seeds/chemistry , Amyloid beta-Peptides/metabolism , Ascorbic Acid/pharmacology , Cell Line, Tumor , Drug Evaluation, Preclinical , Drug Synergism , Eucalyptol/administration & dosage , Ferrous Compounds/pharmacology , Gas Chromatography-Mass Spectrometry , Humans , Hydroxyl Radical/metabolism , Neuroblastoma/pathology , Peptide Fragments/metabolism , Phytotherapy , Plant Extracts/administration & dosage , Reactive Oxygen Species/metabolism , Spices
16.
Neurotox Res ; 35(4): 898-907, 2019 May.
Article in English | MEDLINE | ID: mdl-30806984

ABSTRACT

The cytotoxicity of dopamine on cultured cells of neural origin has been used as a tool to explore the mechanisms of dopaminergic neurodegeneration in Parkinson's disease. In the current study, we have shown that dopamine induces a dose-dependent (10-40 µM) and time-dependent (up to 96 h) loss of cell viability associated with mitochondrial dysfunction and increased intra-cellular accumulation of α-synuclein in cultured SH-SY5Y cells. Dopamine-induced mitochondrial dysfunction and the loss of cell viability under our experimental conditions could be prevented by cyclosporine, a blocker of mitochondrial permeability transition pore, as well as the antioxidant N-acetylcysteine. Interestingly, the dopamine effects on cell viability and mitochondrial functions were significantly prevented by knocking down α-synuclein expression by specific siRNA. Our results suggest that dopamine cytotoxicity is mediated by α-synuclein acting on the mitochondria and impairing its bioenergetic functions.


Subject(s)
Cell Survival/drug effects , Dopamine/toxicity , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Cell Line, Tumor , Cyclosporine , Humans , Membrane Potential, Mitochondrial/drug effects
17.
Alcohol ; 73: 17-24, 2018 12.
Article in English | MEDLINE | ID: mdl-30172164

ABSTRACT

OBJECTIVE: To evaluate oxidative stress and glucose-6-phosphate dehydrogenase (G6PD) status of alcoholics and discern their association, if any, with visual contrast sensitivity function. METHODS: Forty male alcoholic subjects and 36 male non-alcoholic subjects with the same age and nutritional status were enrolled in this study. Serum malondialdehyde (MDA) level and glucose-6-phosphate dehydrogenase (G6PD) activity of erythrocytes were determined by spectrophotometric assay. Contrast sensitivity (CS) function of study subjects was measured using the Rabin Contrast Sensitivity Test (Precision Vision®, La Salle, Illinois, United States). RESULTS: Serum MDA levels were significantly higher (p < 0.0001) and erythrocyte G6PD activity was significantly lower (p = 0.0026) in alcoholic subjects compared to the controls. CS scores of both eyes were also found to be decreased significantly in alcoholic subjects (both at p < 0.0001) compared to control subjects. On the other hand, CS scores of the alcoholic subjects were inversely correlated with the serum MDA level (r = -0.746, p < 0.0001) and directly correlated with erythrocyte G6PD activity (r = 0.78, p < 0.0001). A strong inverse correlation (r = -0.84, p < 0.0001) was also observed between serum MDA level and erythrocyte G6PD activity of alcoholic subjects. CONCLUSION: Reduced G6PD activity and increased serum MDA level might be the key cause of the early visual abnormalities, such as reduced CS function of the alcoholic subjects.


Subject(s)
Alcoholics/psychology , Contrast Sensitivity/drug effects , Glucosephosphate Dehydrogenase/metabolism , Oxidative Stress , Adult , Erythrocytes/enzymology , Humans , Liver Function Tests , Male , Malondialdehyde/blood , Visual Acuity/drug effects
18.
Curr Neuropharmacol ; 16(7): 1086-1097, 2018.
Article in English | MEDLINE | ID: mdl-29189163

ABSTRACT

BACKGROUND: There is a growing body of evidence in animal and cell based models of Parkinson's disease (PD) to suggest that overexpression and / or abnormal accumulation and aggregation of α-synuclein can trigger neuronal death. This important role of α-synuclein in PD pathogenesis is supported by the fact that duplication, triplication and mutations of α-synuclein gene cause familial forms of PD. METHODS: A review of literature was performed by searching PubMed and Google Scholar for relevant articles highlighting the pathogenic role of α-synuclein and the potential therapeutic implications of targeting various pathways related to this protein. RESULTS: The overexpression and accumulation of α-synuclein within neurons may involve both transcriptional and post-transcriptional mechanisms including a decreased degradation of the protein through proteasomal or autophagic processes. The mechanisms of monomeric α-synuclein aggregating to oligomers and fibrils have been investigated intensively, but it is still not certain which form of this natively unfolded protein is responsible for toxicity. Likewise the proteotoxic pathways induced by α- synuclein leading to neuronal death are not elucidated completely but mitochondrial dysfunction, endoplasmic reticulum (ER) stress and altered ER-golgi transport may play crucial roles in this process. At the molecular level, the ability of α-synuclein to form pores in biomembranes or to interact with specific proteins of the cell organelles and the cytosol could be determining factors in the toxicity of this protein. CONCLUSION: Despite many limitations in our present knowledge of physiological and pathological functions of α-synuclein, it appears that this protein may be a target for the development of neuroprotective drugs against PD. This review has discussed many such potential drugs which prevent the expression, accumulation and aggregation of α-synuclein or its interactions with mitochondria or ER and thereby effectively abolish α-synuclein mediated toxicity in different experimental models.


Subject(s)
Antiparkinson Agents/therapeutic use , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Animals , Antiparkinson Agents/pharmacology , Humans , Neuroprotective Agents/pharmacology , alpha-Synuclein/metabolism
19.
Int J Alzheimers Dis ; 2015: 192747, 2015.
Article in English | MEDLINE | ID: mdl-26351614

ABSTRACT

Alzheimer's disease (AD), the major cause of dementia worldwide, is characterized by progressive loss of memory and cognition. The sporadic form of AD accounts for nearly 90% of the patients developing this disease. The last century has witnessed significant research to identify various mechanisms and risk factors contributing to the complex etiopathogenesis of AD by analyzing postmortem AD brains and experimenting with animal and cell culture based models. However, the treatment strategies, as of now, are only symptomatic. Accumulating evidences suggested a significant association between vitamin D deficiency, dementia, and AD. This review encompasses the beneficial role of vitamin D in neurocognition and optimal brain health along with epidemiological evidence of the high prevalence of hypovitaminosis D among aged and AD population. Moreover, disrupted signaling, altered utilization of vitamin D, and polymorphisms of several related genes including vitamin D receptor (VDR) also predispose to AD or AD-like neurodegeneration. This review explores the relationship between this gene-environmental influence and long term vitamin D deficiency as a risk factor for development of sporadic AD along with the role and rationale of therapeutic trials with vitamin D. It is, therefore, urgently warranted to further establish the role of this potentially neuroprotective vitamin in preventing and halting progressive neurodegeneration in AD patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...