Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biol Futur ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030426

ABSTRACT

Salinization and sodification are serious and worldwide growing threats to healthy soil functions. Although plants developed a plethora of traits to cope with high salinity, soil bacteria are also essential players of the adaptation process. However, there is still lack of knowledge on how other biotic and abiotic factors, such as land use or different soil properties, affect the bacterial community structure of these soils. Therefore, besides soil chemical and physical investigations, bacterial communities of differently managed salt-affected soils were analysed through 16S rRNA gene Illumina amplicon sequencing and compared. Results have shown that land use and soil texture were the main drivers in shaping the bacterial community structure of the Hungarian salt-affected soils. It was observed that at undisturbed pasture and meadow sites, soil texture and the ratio of vegetation cover were the determinative factors shaping the bacterial community structures, mainly at the level of phylum Acidobacteriota. Sandy soil texture promoted the high abundance of members of the class Blastocatellia, while at the slightly disturbed meadow soil showing high clay content was dominated by members of the class Acidobacteriia. The OTUs belonging to the class Ktedonobacteria, which were reported mostly in geothermal sediments, reached a relatively high abundance in the meadow soil.

2.
Appl Biochem Biotechnol ; 169(5): 1727-51, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23334843

ABSTRACT

The present experiment was designed to study the 2.45 GHz low-level microwave (MW) irradiation-induced stress response and its effect on implantation or pregnancy in female mice. Twelve-week-old mice were exposed to MW radiation (continuous wave for 2 h/day for 45 days, frequency 2.45 GHz, power density=0.033549 mW/cm(2), and specific absorption rate=0.023023 W/kg). At the end of a total of 45 days of exposure, mice were sacrificed, implantation sites were monitored, blood was processed to study stress parameters (hemoglobin, RBC and WBC count, and neutrophil/lymphocyte (N/L) ratio), the brain was processed for comet assay, and plasma was used for nitric oxide (NO), progesterone and estradiol estimation. Reactive oxygen species (ROS) and the activities of ROS-scavenging enzymes- superoxide dismutase, catalase, and glutathione peroxidase-were determined in the liver, kidney and ovary. We observed that implantation sites were affected significantly in MW-irradiated mice as compared to control. Further, in addition to a significant increase in ROS, hemoglobin (p<0.001), RBC and WBC counts (p<0.001), N/L ratio (p<0.01), DNA damage (p<0.001) in brain cells, and plasma estradiol concentration (p<0.05), a significant decrease was observed in NO level (p<0.05) and antioxidant enzyme activities of MW-exposed mice. Our findings led us to conclude that a low level of MW irradiation-induced oxidative stress not only suppresses implantation, but it may also lead to deformity of the embryo in case pregnancy continues. We also suggest that MW radiation-induced oxidative stress by increasing ROS production in the body may lead to DNA strand breakage in the brain cells and implantation failure/resorption or abnormal pregnancy in mice.


Subject(s)
Brain/radiation effects , Embryo Implantation/radiation effects , Ovary/radiation effects , Pregnancy, Animal/radiation effects , Animals , Brain/enzymology , Catalase/metabolism , Comet Assay , DNA Damage , Estradiol/blood , Female , Glutathione Peroxidase/metabolism , Kidney/enzymology , Kidney/radiation effects , Lipid Peroxidation/radiation effects , Liver/enzymology , Liver/radiation effects , Mice , Microwaves , Ovary/enzymology , Oxidative Stress/radiation effects , Pregnancy , Pregnancy, Animal/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL