Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genome Ed ; 6: 1399051, 2024.
Article in English | MEDLINE | ID: mdl-38988891

ABSTRACT

Modern agriculture has encountered several challenges in achieving constant yield stability especially due to disease outbreaks and lack of long-term disease-resistant crop cultivars. In the past, disease outbreaks in economically important crops had a major impact on food security and the economy. On the other hand climate-driven emergence of new pathovars or changes in their host specificity further poses a serious threat to sustainable agriculture. At present, chemical-based control strategies are frequently used to control microbial pathogens and pests, but they have detrimental impact on the environment and also resulted in the development of resistant phyto-pathogens. As a replacement, cultivating engineered disease-resistant crops can help to minimize the negative impact of regular pesticides on agriculture and the environment. Although traditional breeding and genetic engineering have been instrumental in crop disease improvement but they have certain limitations such as labour intensity, time consumption, and low efficiency. In this regard, genome editing has emerged as one of the potential tools for improving disease resistance in crops by targeting multiple traits with more accuracy and efficiency. For instance, genome editing techniques, such as CRISPR/Cas9, CRISPR/Cas13, base editing, TALENs, ZFNs, and meganucleases, have proved successful in improving disease resistance in crops through targeted mutagenesis, gene knockouts, knockdowns, modifications, and activation of target genes. CRISPR/Cas9 is unique among these techniques because of its remarkable efficacy, low risk of off-target repercussions, and ease of use. Some primary targets for developing CRISPR-mediated disease-resistant crops are host-susceptibility genes (the S gene method), resistance genes (R genes) and pathogen genetic material that prevents their development, broad-spectrum disease resistance. The use of genome editing methods has the potential to notably ameliorate crop disease resistance and transform agricultural practices in the future. This review highlights the impact of phyto-pathogens on agricultural productivity. Next, we discussed the tools for improving disease resistance while focusing on genome editing. We provided an update on the accomplishments of genome editing, and its potential to improve crop disease resistance against bacterial, fungal and viral pathogens in different crop systems. Finally, we highlighted the future challenges of genome editing in different crop systems for enhancing disease resistance.

2.
Int J Biol Macromol ; 253(Pt 1): 126612, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37652335

ABSTRACT

Starches were isolated from five oat varieties (SFO-1, SFO-3, Sabzar, SKO-20 and SKO-96) grown in North-Western Himalayas of India. Moisture content of the varieties ranged from 9.25 ± 0.09 to 13.21 ± 0.11 %, indicating their shelf-stability. Results suggested >90 % purity of starches as was evident from values of ash, proteins, and lipids. Amylose content results showed that all starches fall within category of intermediate-amylose starches. Lambdamax, blue value and OD620/550 were found significantly (p ≤ 0.05) higher in SKO-20. Sabzar exhibited higher starch hydrolysis percentage of 85.16 % whereas, lowest was observed in SKO-20 (78.12 %). Degree of syneresis was higher in SKO-20 however, its freeze-thaw stability was lesser. Wide peak in FTIR spectra at 3320 cm-1 confirms nature of starches. SKO-20 exhibited significantly higher onset gelatinization temperature (65.19 ± 1.06 °C) and enthalpy (15.78 ± 0.15 J/g) whereas, Sabzar exhibited lowest enthalpy. Pasting characteristics indicated lowest and highest final viscosity in SKO-20 (341.30 ± 2.11 mPas) and SKO-96 (1470 ± 4.56 mPas), respectively. SEM results indicated irregular and polygonal shape of starches with size <10 µm. SKO-20 exhibited lowest disintegration time of 2.08 ± 0.01 min and Sabzar showed highest (3.31 ± 0.07 min). SKO-20 released more curcumin (71.28 %) whereas, Sabzar released less. This suggests that SKO-20 could be used as better excipient for delivery of curcumin at target site.


Subject(s)
Amylose , Curcumin , Amylose/chemistry , Avena , Starch/chemistry , Viscosity , Temperature
3.
Foods ; 12(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36613387

ABSTRACT

Apricot powder was developed through spray drying using gum arabic as an encapsulating material at a concentration of 19%. Inlet air temperature, feed total soluble solids (TSS), feed flow rate, and atomization speed were 190 °C, 23.0 °C, 300.05 mL/h, and 17,433 rpm, respectively. This study was therefore conducted to investigate the influence of anticaking agents (tricalcium phosphate and silicon dioxide) and storage conditions (ambient and accelerated) on physicochemical, micrometric, and thermal characteristics of spray-dried apricot powder (SDAP) packaged in aluminum laminates. Both tricalcium phosphate (TCP) and silicon dioxide (SiO2) improved the shelf life and quality of SDAP, with TCP being more effective, since a lower increase in water activity (aw), moisture content, degree of caking, hygroscopicity, and rehydration time was observed in TCP-treated samples followed by SiO2-treated samples than the control. Furthermore, flowability, glass transition temperature (Tg), and sticky-point temperature (Ts) of SDAP tended to decrease in a significant manner (p < 0.05) under both storage conditions. However, the rate of decrease was higher during accelerated storage. The water activity of treated samples under ambient conditions did not exceed 0.60 and had a total plate count within the permissible range of 40,000 CFU/g, indicating shelf stability of the powder. The predicted shelf life of powder obtained from the Guggenheim−Anderson−de Boer (GAB) model and experimental values were very similar, with TCP-treated samples having a predicted shelf life of 157 days and 77 days under ambient and accelerated storage conditions, respectively. However, the respective experimental shelf life under the same conditions was 150 and 75 days, respectively. Similarly, the predicted shelf life of SiO2-treated samples under ambient and accelerated storage was 137 and 39 days, respectively, whereas the experimental values were 148 and 47 days, respectively. In conclusion, TCP proved more effective than SiO2 at preserving shelf life by preventing moisture ingress.

SELECTION OF CITATIONS
SEARCH DETAIL