Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(5): e0217009, 2019.
Article in English | MEDLINE | ID: mdl-31141523

ABSTRACT

Researchers investigating cancer chemotherapy and management continue to search for agents that selectively kill malignant cells and leave healthy neighboring cells intact. Natural products provide relevant resources for anti-cancer drug discovery. However, the physicochemical properties of these compounds limit their efficient uptake and bioavailability. We introduced a nanocarrier system, namely, zinc-aluminum-layered double hydroxide (ZnAl-LDH) intercalated with protocatechuic acid. In this study, the efficacy and toxicity of protocatechuic acid intercalated in zinc aluminum-layered double hydroxide nanoparticles (PCA-ZnAl) against diethylnitrosamine/phenobarbital (DEN/PB)-induced hepatocellular carcinoma (HCC) in BALB/c mice was evaluated. HCC in male mice was induced by a single-dose intraperitoneal administration of DEN and was promoted by the introduction of PB via drinking water for 12 weeks. HCC induction was confirmed after the DEN/PB introduction period by measurement of the elevated level of serum α-feto protein (AFP). The results showed that the level of α-fetoprotein was significantly reduced in PCA-ZnAl (350±43.90 ng/mL), doxorubicin (DOX) (290±20.52 ng/mL) and ZnAl-LDH (390±19.65 ng/mL) treated animals compared to HCC mice treated with normal saline (580.4± 52.04 ng/mL). Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels were significantly increased, whereas the level of lipid peroxidation was significantly decreased in HCC mice treated with DOX, PCA-ZnAl and ZnAl-LDH compared with those in HCC mice treated with saline. Restoration of hepatocyte morphology was observed following treatment that was comparable to that in the normal control group. Deterioration of hepatic cells and a significant increase of aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) were observed in the cancer-induced untreated group compared with that in the groups treated with nanoparticles. The histopathological features of the liver obtained from PCA-ZnAl-treated mice showed a uniform size with a similar distribution of the nuclear-cytoplasmic ratio and nucleus centrally located in the cytoplasm, similar to the normal liver cells. The results underscored the potential of PCA-ZnAl for the treatment of hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Hydroxybenzoates/pharmacology , Liver Neoplasms, Experimental/drug therapy , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Diethylnitrosamine/toxicity , Disease Models, Animal , Humans , Hydroxides/pharmacology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/pathology , Mice , Nanoparticles/chemistry , Phenobarbital/toxicity
2.
Chem Cent J ; 10: 81, 2016.
Article in English | MEDLINE | ID: mdl-28028386

ABSTRACT

In this paper, we demonstrate the preparation of silibinin-loaded carbon nanotubes (SWSB) with surface coating agents via non-covalent approach as an effective drug delivery system. The resulting surface-coated SWSB nanocomposites are extensively characterized by Fourier transform infrared (FTIR) and Raman spectroscopies, ultraviolet-visible (UV-Vis) spectrometry and field emission scanning electron microscopy (FESEM). The FTIR and Raman studies show that an additional layer is formed by these coating agents in the prepared nanocomposites during the coating treatment and these results are confirmed by FESEM. Drug loading and release profiles of the coated SWSB nanocomposites in phosphate buffered saline solution at pH 7.4 is evaluated by UV-Vis spectrometry. The in vitro results indicate that the surface-modified nanocomposites, with SB loading of 45 wt%, altered the initial burst and thus, resulted in a more prolonged and sustained release of SB. In addition, these nanocomposites exhibit a pseudo-second-order release kinetic which was driven by the ion exchange between the ionized SWSB and the anions in the release medium. The cytotoxicity effect of the resulting nanocomposites on normal mouse fibroblast cells is evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It is observed that the surfactant and polymer coating improved the biocompatibility of the SWSB nanocomposites significantly, which deem further exploitation for their application as potential anticancer drug delivery system.

SELECTION OF CITATIONS
SEARCH DETAIL
...