Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(33): 45474-45485, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33866505

ABSTRACT

Atmospheric settled dust study was conducted with the purpose of to determine the source of heavy metal elements (As, Co, Cr, Cu, Ni, Pb, and Zn) in airborne dust from Ulaanbaatar using the multivariate analysis and spatial distribution mapping by geographic information system (GIS) with the systematic grid. A total of 57 dust samples were collected from the impervious surfaces at 2-4 m above the ground in January of 2020. The mean concentrations of heavy metals were increasing order of Co-10.4 ± 1.3 mg/kg > As-16.5 ± 5.9 mg/kg > Ni-21.3 ± 3.3 mg/kg > Pb-51.7 ± 26.4 mg/kg > Cu-65.5 ± 23.6 mg/kg > Cr-70.2 ± 18.7 mg/kg > Zn-571.3 ± 422.8 mg/kg. In terms of multivariate analysis, we used Pearson's correlation, principal component analysis (PCA), and hierarchical cluster analysis (CA). Three principal components, which are eigenvalues higher than 1, were determined accounting for 70.5% of the total variance by PCA. As a result, PC1 38.5% (As, Cr, Cu, and Ni), PC2 17.3% (Pb and Zn), and PC3 14.7% (Co and Pb) are attributable to coal combustion, vehicle exhaust emission, and resuspension of soil particles, respectively. The results of correlation analysis and CA were fairly in agreement with PCA. The spatial distribution maps of heavy metals were revealed in the downtown in which 40 covered sampling sites with about 700m intervals. In the spatial distribution mappings, generally, the southern part of the mapping area was higher concentrations of heavy metals. An increment of heavy metals concentration was presented for As, Cr, Co, and Ni with their similar trend in the southwestern part of the mapping. Besides, another trend for the distribution of the high concentrations of Cu and Zn was observed in the south and southeast parts. In terms of Pb, it had no noticeable pattern of distribution; however, a high spot was presented in the southwest part of the map.


Subject(s)
Dust , Metals, Heavy , China , Dust/analysis , Environmental Monitoring , Metals, Heavy/analysis , Mongolia , Risk Assessment , Soil
2.
Article in English | MEDLINE | ID: mdl-30717405

ABSTRACT

The purpose of this study was to identify pollution sources by characterizing polycyclic aromatic hydrocarbons from total suspended particles in Ulaanbaatar City. Fifteen polycyclic aromatic hydrocarbons were measured in total suspended particle samples collected from different sites, such as the urban center, industrial district and ger (Mongolian traditional house) areas, and residential areas both in heating (January, March), and non-heating (September) periods in 2017. Polycyclic aromatic hydrocarbon concentration ranged between 131 and 773 ng·m-3 in winter, 22.2 and 530.6 ng·m-3 in spring, and between 1.4 and 54.6 ng·m-3 in autumn. Concentrations of specific polycyclic aromatic hydrocarbons such as phenanthrene were higher in the ger area in winter and spring seasons, and the pyrene concentration was dominant in late summer in the residential area. Polycyclic aromatic hydrocarbons concentrations in the ger area were particularly higher than the other sites, especially in winter. Polycyclic aromatic hydrocarbon ratios indicated that vehicle emissions were likely the main source at the city center in the winter time. Mixed contributions from biomass, coal, and petroleum combustion were responsible for the particulate polycyclic aromatic hydrocarbon pollution at other sampling sites during the whole observation period. The lifetime inhalation cancer risk values in the ger area due to winter pollution were estimated to be 1.2 × 10-5 and 2.1 × 10-5 for child and adult exposures, respectively, which significantly exceed Environmental Protection Agency guidelines.


Subject(s)
Air Pollutants/analysis , Inhalation Exposure/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Cities , Environmental Monitoring , Industry , Inhalation Exposure/standards , Mongolia , Seasons , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL