Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
2.
Pharmacol Rev ; 76(5): 915-955, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38849155

ABSTRACT

Cannabis is one of the oldest and widely used substances in the world. Cannabinoids within the cannabis plant, known as phytocannabinoids, mediate cannabis' effects through interactions with the body's endogenous cannabinoid system. This endogenous system, the endocannabinoid system, has important roles in physical and mental health. These roles point to the potential to develop cannabinoids as therapeutic agents while underscoring the risks related to interfering with the endogenous system during nonmedical use. This scoping narrative review synthesizes the current evidence for both the therapeutic and adverse effects of the major (i.e., Δ9-tetrahydrocannabinol and cannabidiol) and lesser studied minor phytocannabinoids, from nonclinical to clinical research. We pay particular attention to the areas where evidence is well established, including analgesic effects after acute exposures and neurocognitive risks after acute and chronic use. In addition, drug development considerations for cannabinoids as therapeutic agents within the United States are reviewed. The proposed clinical study design considerations encourage methodological standards for greater scientific rigor and reproducibility to ultimately extend our knowledge of the risks and benefits of cannabinoids for patients and providers. SIGNIFICANCE STATEMENT: This work provides a review of prior research related to phytocannabinoids, including therapeutic potential and known risks in the context of drug development within the United States. We also provide study design considerations for future cannabinoid drug development.


Subject(s)
Cannabinoids , Humans , Cannabinoids/therapeutic use , Cannabinoids/pharmacology , Cannabinoids/adverse effects , United States , Animals , Drug Development
4.
J Pharmacol Exp Ther ; 390(1): 14-28, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38272671

ABSTRACT

Abuse of novel arylcyclohexylamines (ACX) poses risks for toxicities, including adverse neurocognitive effects. In vivo effects of ring-substituted analogs of phencyclidine (PCP), eticyclidine (PCE), and ketamine are understudied. Adult male National Institutes of Health Swiss mice were used to assess locomotor effects of PCP and its 3-OH, 3-MeO, 3-Cl, and 4-MeO analogs, PCE and its 3-OH and 3-MeO analogs, and ketamine and its deschloro and 2F-deschloro analogs, in comparison with those of methamphetamine (METH), 3,4-methylenedioxymethamphetamine (MDMA), and two benzofuran analogs of MDMA. PCP-like interoceptive effects for all of these ACXs were determined using a food-reinforced drug discrimination procedure in adult male Sprague Dawley rats. A novel operant assay of rule-governed behavior incorporating aspects of attentional set-shifting was used to profile psychosis-like neurocognitive effects of PCP and 3-Cl-PCP in rats, in comparison with cocaine and morphine. PCP-like ACXs were more effective locomotor stimulants than the amphetamines, PCE-like ACXs were as effective as the amphetamines, and ketamine-like ACXs were less effective than the amphetamines. Addition of -Cl, -OH, or -OMe at the 3-position on the aromatic ring did not impact locomotor effectiveness, but addition of -OMe at the 4-position reduced locomotor effectiveness. Lethal effects were induced by drugs with -OH at the 3-position or -OMe at the 3- or 4-position. All novel ACXs substituted at least partially for PCP, and PCP and 3-Cl-PCP elicited dose-dependent psychosis-like neurocognitive deficits in the rule-governed behavior task not observed with cocaine or morphine. Novel ACXs exhibit substantial abuse liability and toxicities not necessarily observed with their parent drugs. SIGNIFICANCE STATEMENT: Novel arylcyclohexylamine analogs of PCP, PCE, and ketamine are appearing on the illicit market, and abuse of these drugs poses risks for toxicities, including adverse neurocognitive effects. These studies demonstrate that the novel ACXs exhibit PCP-like abuse liability in the drug discrimination assay, elicit varied locomotor stimulant and lethal effects in mice, and induce psychosis-like neurocognitive effects in rats.


Subject(s)
Phencyclidine , Rats, Sprague-Dawley , Animals , Male , Mice , Phencyclidine/analogs & derivatives , Phencyclidine/toxicity , Rats , Psychoses, Substance-Induced/etiology , Cyclohexylamines , Motor Activity/drug effects , Cognition/drug effects , Conditioning, Operant/drug effects , Locomotion/drug effects , Illicit Drugs/adverse effects , Illicit Drugs/toxicity , Ketamine/analogs & derivatives , Ketamine/toxicity , Substance-Related Disorders/psychology , Phencyclidine Abuse
5.
Neuropharmacology ; 245: 109827, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38154512

ABSTRACT

Substitutions to the phenethylamine structure give rise to numerous amphetamines and cathinones, contributing to an ever-growing number of abused novel psychoactive substances. Understanding how various substitutions affect the pharmacology of phenethylamines may help lawmakers and scientists predict the effects of newly emerging drugs. Here, we established structure-activity relationships for locomotor stimulant and monoamine transporter effects of 12 phenethylamines with combinations of para-chloro, ß-keto, N-methyl, or N-ethyl additions. Automated photobeam analysis was used to evaluate effects of drugs on ambulatory activity in mice, whereas in vitro assays were used to determine activities at transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT) in rat brain synaptosomes. In mouse studies, all compounds stimulated locomotion, except for 4-chloro-N-ethylcathinone. Amphetamines were more potent stimulants than their ß-keto counterparts, while para-chloro amphetamines tended to be more efficacious than unsubstituted amphetamines. Para-chloro compounds also produced lethality at doses on the ascending limbs of their locomotor dose-effect functions. The in vitro assays showed that all compounds inhibited uptake at DAT, NET, and SERT, with most compounds also acting as substrates (i.e., releasers) at these sites. Unsubstituted compounds displayed better potency at DAT and NET relative to SERT. Para-chloro substitution or increased N-alkyl chain length augmented relative potency at SERT, while combined para-chloro and N-ethyl substitutions reduced releasing effects at NET and DAT. These results demonstrate orderly SAR for locomotor stimulant effects, monoamine transporter activities, and lethality induced by phenethylamines. Importantly, 4-chloro compounds produce toxicity in mice that suggests serious risk to humans using these drugs in recreational contexts.


Subject(s)
Alkaloids , Central Nervous System Stimulants , Humans , Rats , Mice , Animals , Amphetamines/pharmacology , Alkaloids/pharmacology , Central Nervous System Stimulants/pharmacology , Structure-Activity Relationship , Carrier Proteins , Dopamine Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins , Norepinephrine Plasma Membrane Transport Proteins
6.
Drug Alcohol Depend ; 250: 110917, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37579623

ABSTRACT

BACKGROUND: Humans often administer psychostimulants in party or music festival settings characterized by warm ambient temperatures, which may impact drug effects; however, preclinical studies rarely investigate drug effects at multiple ambient temperatures. Work with 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxypyrovalerone (MDPV) suggests that the presence of a 3,4-methylenedioxy ring moiety may influence ambient temperature-dependent effects. METHODS: Locomotor activity and conditioned place preference dose-response curves were generated at 20±2°C for two amphetamine analogues (MDMA and methamphetamine [METH]) and two cathinone analogues (MDPV and α-pyrrolidinopentiophenone [αPVP]) in mice. Effects were then redetermined at 29±2°C for each drug and assay. RESULTS: All four drugs elicited dose-dependent locomotor stimulation at the cool ambient temperature. At the warm ambient temperature, MDMA and MDPV produced sensitization to stereotypy, whereas METH and αPVP produced sensitization to locomotor activity. Regarding place conditioning, the warm ambient environment potentiated place preference elicited by doses of METH and αPVP that were sub-threshold in the cool ambient environment, but attenuated the effects of analogous doses of MDMA and MDPV. CONCLUSIONS: These studies suggest that warmer ambient temperatures may potentiate typical stimulant effects for the drugs lacking the 3,4-methylenedioxy ring, but may potentiate the behaviorally toxic/adverse effects for the drugs containing a 3,4-methylenedioxy ring. Thus, preclinical abuse liability studies conducted at standard laboratory temperatures may not fully capture the effects of psychostimulants and highlight the need to model the environments in which drugs are typically used by humans.


Subject(s)
Central Nervous System Stimulants , Conditioning, Operant , Locomotion , N-Methyl-3,4-methylenedioxyamphetamine , Synthetic Cathinone , Temperature , Animals , Male , Mice , Central Nervous System Stimulants/adverse effects , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Dose-Response Relationship, Drug , Hallucinogens/adverse effects , Locomotion/drug effects , Locomotion/physiology , N-Methyl-3,4-methylenedioxyamphetamine/adverse effects , Substance-Related Disorders/physiopathology , Synthetic Cathinone/adverse effects , Disease Models, Animal
7.
J Exp Anal Behav ; 117(3): 442-456, 2022 05.
Article in English | MEDLINE | ID: mdl-35142382

ABSTRACT

Polysubstance use makes up a majority of drug use, yet relatively few studies investigate the abuse-related effects of drug mixtures. Dose-addition analyses provide a rigorous and quantitative method to determine the nature of the interaction (i.e., supraadditive, additive, or subadditive) between two or more drugs. As briefly reviewed here, studies in rhesus monkeys have applied dose-addition analyses to group level data to characterize the nature of the interaction between the reinforcing effects of stimulants and opioids (e.g., mixtures of cocaine + heroin). Building upon these foundational studies, more recent work has applied dose-addition analyses to better understand the nature of the interaction between caffeine and illicit stimulants such as MDPV and methamphetamine in rats. In addition to utilizing a variety of operant procedures, including drug discrimination, drug self-administration, and drug-primed reinstatement, these studies have incorporated potency and effectiveness ratios as a method for both statistical analysis and visualization of departures from additivity at both the group and individual subject level. As such, dose-addition analyses represent a powerful and underutilized approach to quantify the nature of drug-drug interactions that can be applied to a variety of abuse-related endpoints in order to better understand the behavioral pharmacology of polysubstance use.


Subject(s)
Central Nervous System Stimulants , Cocaine , Animals , Benzodioxoles/pharmacology , Central Nervous System Stimulants/pharmacology , Cocaine/pharmacology , Dose-Response Relationship, Drug , Pharmaceutical Preparations , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley
8.
J Am Assoc Lab Anim Sci ; 60(3): 272-280, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33888181

ABSTRACT

Drug developers worldwide assess compound safety and efficacy using measures that include mouse core temperature and locomotor activity. Subtle differences in animal housing conditions between institutions can alter these values, impacting scientific rigor and reproducibility. In these studies, adult male NIH Swiss mice were surgically implanted with radiotelemetry probes that simultaneously monitored core temperature and locomotor activity across various housing conditions. In the first study, ambient temperature was varied between 20 °C and 28°C in groups of singly housed mice. Additional studies held the mice at a constant ambient temperature and examined the effects of cage density (housing animals singly or in groups of 3 or 6), bedding change and provision of nesting material, and the availability of a running wheel on core temperature and locomotor activity. Mice overwhelmingly maintained species-typical core temperatures across all ambient temperatures, across all housing conditions, when bedding was fresh or old, and with or without the provision of cotton squares as nesting material. However, engaging in wheel running and the combination of fresh bedding and cotton squares transiently increased core temperatures beyond the species-typical range. Similarly, the circadian distribution of locomotor activity was significantly disrupted by placing animals in cages with fresh bedding or nesting material, or by performing both of these manipulations concurrently during the light period. These findings suggest that standard husbandry practices and common housing conditions may transiently affect core temperature in adult mice. Furthermore, these practices may have profound and relatively long-lasting effects on motor activity and the regulation of circadian rhythms.


Subject(s)
Laboratories , Motor Activity , Animals , Housing, Animal , Locomotion , Male , Mice , Reproducibility of Results , Temperature
9.
Neuropharmacology ; 190: 108570, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33864800

ABSTRACT

While classical cathinones, such as methcathinone, have been shown to be monoamine releasing agents at human monoamine transporters, the subgroup of α-pyrrolidinophenones has thus far solely been characterized as monoamine transporter reuptake inhibitors. Herein, we report data from previously undescribed α-pyrrolidinopropiophenone (α-PPP) derivatives and compare them with the pharmacologically well-researched α-PVP (α-pyrrolidinovalerophenone). Radiotracer-based in vitro uptake inhibition assays in HEK293 cells show that the investigated α-PPP derivatives inhibit the human high-affinity transporters of dopamine (hDAT) and norepinephrine (hNET) in the low micromolar range, with α-PVP being ten times more potent. Similar to α-PVP, no relevant pharmacological activity was found at the human serotonin transporter (hSERT). Unexpectedly, radiotracer-based in vitro release assays reveal α-PPP, MDPPP and 3Br-PPP, but not α-PVP, to be partial releasing agents at hNET (EC50 values in the low micromolar range). Furthermore, uptake inhibition assays at low-affinity monoamine transporters, i.e., the human organic cation transporters (hOCT) 1-3 and human plasma membrane monoamine transporter (hPMAT), bring to light that all compounds inhibit hOCT1 and 2 (IC50 values in the low micromolar range) while less potently interacting with hPMAT and hOCT3. In conclusion, this study describes (i) three new hybrid compounds that efficaciously block hDAT while being partial releasers at hNET, and (ii) highlights the interactions of α-PPP-derivatives with low-affinity monoamine transporters, giving impetus to further studies investigating the interaction of drugs of abuse with OCT1-3 and PMAT.


Subject(s)
Norepinephrine Plasma Membrane Transport Proteins/drug effects , Norepinephrine/metabolism , Propiophenones/pharmacology , Pyrroles/pharmacology , Pyrrolidines/pharmacology , Dopamine Plasma Membrane Transport Proteins/drug effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Equilibrative Nucleoside Transport Proteins/drug effects , Equilibrative Nucleoside Transport Proteins/metabolism , HEK293 Cells , Humans , In Vitro Techniques , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Organic Cation Transport Proteins/drug effects , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 1/drug effects , Organic Cation Transporter 1/metabolism , Organic Cation Transporter 2/drug effects , Organic Cation Transporter 2/metabolism , Serotonin Plasma Membrane Transport Proteins/drug effects , Serotonin Plasma Membrane Transport Proteins/metabolism
10.
Psychopharmacology (Berl) ; 238(4): 1183-1192, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33484299

ABSTRACT

RATIONALE: Oxycodone is one of the most commonly prescribed and most frequently abused opioid analgesics, yet little is known regarding individual vulnerabilities to oxycodone abuse. The synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) has been shown to produce a "high-responder" phenotype characterized by increased drug intake and responding during periods of signaled drug unavailability (e.g., during post-infusion timeouts) in ~ 40% of male Sprague-Dawley rats. This phenotype also transfers to other psychostimulants (e.g., cocaine and methamphetamine), but it is unknown whether this phenotype transfers to other (non-stimulant) drugs of abuse. OBJECTIVES: The present study aimed to (1) reestablish the "high-responder" phenotype in male Sprague-Dawley rats (n = 11) that acquired self-administration of MDPV (0.032 mg/kg/inf) on a fixed ratio 1 (FR1) schedule of reinforcement and (2) compare full dose-response curves for MDPV and oxycodone self-administration under an FR5 schedule of reinforcement. RESULTS: MDPV was ~ 3-fold more potent at maintaining peak levels of behavior and resulted in greater overall drug intake than oxycodone. High levels of timeout responding were noted in a subset of rats that acquired MDPV self-administration ("high-responders", n = 5), and the FR5 dose-response curve for MDPV was shifted upward for these rats relative to their "low-responder" (n = 6) counterparts. "High-responders" also self-administered more infusions of oxycodone under an FR5 schedule of reinforcement than "low-responders"; however, this was not coupled with increased levels of timeout responding. CONCLUSIONS: The present data suggest that a subset of individuals with a history of using synthetic cathinones may be particularly vulnerable to the abuse of oxycodone.


Subject(s)
Benzodioxoles/pharmacology , Conditioning, Operant/drug effects , Narcotics/pharmacology , Oxycodone/pharmacology , Pyrrolidines/pharmacology , Self Administration , Animals , Central Nervous System Stimulants/administration & dosage , Dose-Response Relationship, Drug , Male , Rats , Rats, Sprague-Dawley , Reinforcement Schedule , Synthetic Cathinone
11.
Psychopharmacology (Berl) ; 236(3): 1031-1041, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30267131

ABSTRACT

RATIONALE: "Bath salts" preparations often contain combinations of synthetic cathinones (e.g., 3,4-methylenedioxymethcathinone [methylone], 3,4-methylenedioxypyrovalerone [MDPV]), and caffeine, and evidence suggests that mixtures of synthetic cathinones and caffeine (e.g., MDPV + caffeine or methylone + caffeine) can be more potent and/or effective reinforcers than predicted for an additive interaction. OBJECTIVE: To use demand curve analyses to compare the reinforcing effectiveness of MDPV and methylone to mixtures of MDPV + caffeine and methylone + caffeine. METHODS: Male Sprague-Dawley rats acquired methylone self-administration (0.32 mg/kg/inf) under a fixed ratio (FR) 1 schedule of reinforcement and generated full dose-response curves for methylone (0.01-1 mg/kg/inf) under an FR5 schedule of reinforcement. Demand curves were then obtained for methylone, MDPV, caffeine, and methylone + caffeine and MDPV + caffeine mixtures by increasing the FR across sessions according to the following series: 3, 10, 18, 32, 56, 100, 178, etc. RESULTS: Self-administration of methylone was rapidly acquired by 87.5% of rats and was maintained across a range of doses, producing an inverted U-shaped dose-response curve. Rank order demand for the individual constituents was MDPV > methylone > caffeine. Demand for the 3:1 (but not 10:1) methylone + caffeine mixture was greater than that for methylone alone, and demand for MDPV alone was similar to both MDPV + caffeine mixtures evaluated. CONCLUSIONS: These studies provide additional evidence that although methylone is an effective reinforcer, combining methylone with caffeine results in an enhanced reinforcing effectiveness compared to methylone alone. Thus, abused "bath salts" preparations containing synthetic cathinones and caffeine may have higher abuse liability than preparations containing only synthetic cathinones.


Subject(s)
Benzodioxoles/administration & dosage , Caffeine/administration & dosage , Central Nervous System Stimulants/administration & dosage , Economics, Behavioral , Methamphetamine/analogs & derivatives , Pyrrolidines/administration & dosage , Reinforcement, Psychology , Animals , Dose-Response Relationship, Drug , Male , Methamphetamine/administration & dosage , Rats , Rats, Sprague-Dawley , Self Administration , Synthetic Cathinone
12.
Neuropsychopharmacology ; 43(12): 2399-2407, 2018 11.
Article in English | MEDLINE | ID: mdl-30305739

ABSTRACT

Synthetic cathinones are common constituents of abused "bath salts" preparations and represent a large family of structurally related compounds that function as cocaine-like inhibitors or amphetamine-like substrates of dopamine (DAT), norepinephrine (NET), and serotonin (SERT) transporters. Preclinical evidence suggests that some cathinones (e.g., MDPV and α-PVP) are more effective reinforcers than prototypical stimulant drugs of abuse, such as cocaine or methamphetamine. Although the reinforcing potency of these cathinones is related to their potency to inhibit DAT, less is known about the pharmacological determinants of their unusually high reinforcing effectiveness. To this end, we tested the hypothesis that reinforcing effectiveness of cathinone stimulants is positively correlated with their selectivity for DAT relative to SERT. Uptake inhibition assays in rat brain synaptosomes were used to directly compare the potency of MDPV, MDPBP, MDPPP, α-PVP, α-PPP, and cocaine at DAT, NET, and SERT, whereas intravenous self-administration in rats was used to quantify relative reinforcing effectiveness of the drugs using progressive ratio (PR) and behavioral economic procedures. All cathinones were more potent at DAT than NET or SERT, with a rank order for selectivity at DAT over SERT of α-PVP > α-PPP > MDPV > MDPBP > MDPPP > cocaine. These synthetic cathinones were more effective reinforcers than cocaine, and the measures of reinforcing effectiveness determined by PR and demand curve analyses were highly correlated with selectivity for DAT over SERT. Together, these studies provide strong and convergent evidence that the abuse potential of stimulant drugs is mediated by uptake inhibition at DAT, with activity at SERT serving as a negative modulator of reinforcing effectiveness.


Subject(s)
Benzodioxoles/administration & dosage , Cocaine/administration & dosage , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Uptake Inhibitors/administration & dosage , Illicit Drugs , Pentanones/administration & dosage , Pyrrolidines/administration & dosage , Alkaloids/administration & dosage , Animals , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Dopamine Plasma Membrane Transport Proteins/metabolism , Dose-Response Relationship, Drug , Male , Psychotropic Drugs/administration & dosage , Rats , Rats, Sprague-Dawley , Self Administration , Substance-Related Disorders/metabolism , Substance-Related Disorders/psychology , Synthetic Cathinone
13.
Pharmacol Res Perspect ; 6(4): e00403, 2018 07.
Article in English | MEDLINE | ID: mdl-29930811

ABSTRACT

Morphine-6-O-sulfate (M6S) is as a mixed-action mu/delta (µ/δ) opioid receptor agonist with high potency and analgesic efficacy. These studies used assays of drug discrimination and schedule-controlled responding to assess abuse-liability, tolerance, and physical dependence as compared to morphine in rats. Attempts to train 0.3 mg/kg (IP) M6S from saline failed, but all rats rapidly acquired the discrimination when the training dose was changed to 3.0 mg/kg morphine, and substitution tests showed that morphine and fentanyl both fully substituted for the training dose, M6S and M3A6S (3-O-acetyl ester of M6S) only partially substituted, and salvinorin A did not elicit morphine-like effects. Tolerance to response rate-decreasing effects was studied in rats administered either 1.0 or 3.0 mg/kg morphine or M6S before food-reinforced operant sessions. At both unit doses, tolerance to M6S-elicited rate suppression developed more slowly than tolerance to morphine-induced reductions in response rates. To assess dependence, rats were maintained on 1.0 mg/kg morphine or 1.0 mg/kg M6S until food-reinforced response rates were stable for at least 5 days. Rats were then administered saline or increasing doses of the opioid antagonist naltrexone (NTX) (0.3, 1.0, 3.0, or 10.0 mg/kg) in order to determine antagonist-precipitated withdrawal. NTX precipitated withdrawal was similar in both morphine-maintained and M6S-maintained rats. In conclusion, the mixed µ/δ agonist activity of M6S failed to completely protect against the development of physical dependence, but delayed tolerance development to behavioral effects and resulted in decreased morphine-like subjective effects, perhaps implying a decreased abuse liability over µ agonists.


Subject(s)
Analgesics, Opioid/pharmacology , Morphine Derivatives/pharmacology , Receptors, Opioid, delta/agonists , Receptors, Opioid, mu/agonists , Animals , Conditioning, Operant , Discrimination Learning , Drug Tolerance , Male , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Opioid-Related Disorders , Rats, Sprague-Dawley , Substance Withdrawal Syndrome
14.
J Pharmacol Exp Ther ; 364(2): 359-366, 2018 03.
Article in English | MEDLINE | ID: mdl-29217539

ABSTRACT

Lorcaserin is a serotonin (5-HT)2C receptor-preferring agonist approved by the US Food and Drug Administration to treat obesity. Lorcaserin decreases cocaine self-administration in rats and monkeys. Although this effect is partially inhibited by a 5-HT2C receptor antagonist (SB242084), lorcaserin also has effects at 5-HT2A and 5-HT1A receptors, and the relative contribution of these receptors to its anti-cocaine effects has not been investigated. The goals of this study were to determine 1) the potency and effectiveness of lorcaserin to decrease self-administration of cocaine and 3,4-methylenedioxypyrovalerone (MDPV), a common "bath salts" constituent; and 2) the receptor(s) mediating the effects of lorcaserin on cocaine and MDPV self-administration. Male Sprague-Dawley rats (n = 6) were trained to self-administer MDPV under a progressive ratio schedule of reinforcement and maintained under this schedule with daily access to 0.32 mg/kg per infusion of cocaine or 0.032 mg/kg per infusion of MDPV. Dose-response curves for the effects of lorcaserin on cocaine and MDPV self-administration were generated by administering lorcaserin (0.1-5.6 mg/kg) 25 minutes before the start of the session. To assess the effects of 5-HT2C (SB242084, 0.1 mg/kg), 5-HT2A (MDL100907, 0.1 mg/kg), and 5-HT1A (WAY100635, 0.178 mg/kg) receptor antagonists, they were administered 15 minutes before lorcaserin. Lorcaserin decreased cocaine and MDPV self-administration with equal potency. Antagonism of 5-HT2C (but not 5-HT1A or 5-HT2A) receptors blocked the effects of lorcaserin on cocaine and MDPV self-administration. Taken together, these data provide additional support for further development of 5-HT2C receptor agonists, such as lorcaserin, for the treatment of stimulant abuse.


Subject(s)
Benzazepines/pharmacology , Benzodioxoles/antagonists & inhibitors , Cocaine/antagonists & inhibitors , Pyrrolidines/antagonists & inhibitors , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Animals , Benzodioxoles/administration & dosage , Cocaine/administration & dosage , Dose-Response Relationship, Drug , Male , Pyrrolidines/administration & dosage , Rats , Rats, Sprague-Dawley , Reinforcement, Psychology , Self Administration , Synthetic Cathinone
15.
Neuropharmacology ; 134(Pt A): 13-21, 2018 05 15.
Article in English | MEDLINE | ID: mdl-28887185

ABSTRACT

3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of illicit bath salts products, and in vitro studies implicate monoamine transporters as mediators of its pharmacological effects. Locomotor and thermoregulatory effects of MDPV depend on ambient temperature, so the current studies aimed to gauge the involvement of dopamine (DA), norepinephrine (NE), and serotonin (5-HT) in MDPV-induced locomotor stimulation and hyperthermia in the mouse at different ambient temperatures. Mice were pretreated with the selective 5-HT-reuptake inhibitor fluoxetine (3 mg/kg), the NE-reuptake inhibitor desipramine (3 mg/kg), the DA-reuptake inhibitor bupropion (10 mg/kg), or saline, followed by 10 mg/kg MDPV while thermoregulation and locomotor activity were monitored via radiotelemetry. In other studies, mice were pretreated for three days with saline, 100 mg/kg of the tryptophan hydroxylase inhibitor para-chlorophenylalanine (p-CPA), or 100 mg/kg of the tyrosine hydroxylase inhibitor α-methyl-para-tyrosine (α-MPT) before receiving 10 mg/kg MDPV on the fourth day. All manipulations were conducted at both 20 °C and 28 °C ambient temperatures. MDPV increased locomotor activity under both ambient conditions and modestly increased core body temperature at 20 °C; however, neither pretreatment with monoamine reuptake inhibitors nor monoamine synthesis inhibitors significantly altered these effects. At 28 °C, MDPV induced a more pronounced hyperthermic effect which was attenuated by bupropion, desipramine, or fluoxetine pretreatment, but not by the monoamine synthesis inhibitors. These results suggest that MDPV may have a more complex pharmacological profile than suggested by in vitro studies, perhaps extending beyond interactions with monoamine transporters. A more thorough binding profile of MDPV at various brain recognition sites should be developed. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.'


Subject(s)
Benzodioxoles/toxicity , Biogenic Monoamines/metabolism , Fever/chemically induced , Locomotion/drug effects , Neurotransmitter Uptake Inhibitors/pharmacology , Pyrrolidines/toxicity , Temperature , Analysis of Variance , Animals , Body Temperature/drug effects , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Fenclonine/pharmacology , Fever/physiopathology , Fluoxetine/pharmacology , Male , Mice , Telemetry , alpha-Methyltyrosine/pharmacology , Synthetic Cathinone
16.
Neuropharmacology ; 134(Pt A): 28-35, 2018 05 15.
Article in English | MEDLINE | ID: mdl-28811192

ABSTRACT

"Bath salts" preparations contain synthetic cathinones which interact with monoamine transporters and function as either monoamine uptake inhibitors or releasers. 3,4-Methylenedioxypyrovalerone (MDPV), 3,4-methylenedioxymethcathinone (methylone), and 4-methylmethcathinone (mephedrone) were three of the most common cathinones (i.e., "first-generation" cathinones); however, after the US Drug Enforcement Administration placed them under Schedule I regulations, they were replaced with structurally related cathinones that were not subject to regulations (i.e., "second-generation" cathinones). Although the reinforcing effects of some second-generation cathinones have been described (e.g., α-pyrrolidinopentiophenone [α-PVP]), little is known about how structural modifications, particularly those involving the methylenedioxy moiety and α-alkyl side chain, impact the abuse liability of other second-generation cathinones (e.g., α-pyrrolidinopropiophenone [α-PPP], 3,4-methylenedioxy-α-pyrrolidinobutiophenone [MDPBP], and 3,4-methylenedioxy-α-pyrrolidinopropiophenone [MDPPP]). The present study used male Sprague-Dawley rats (n = 12 per drug) to directly compare: (1) the acquisition of responding for α-PVP (0.032 mg/kg/inf), α-PPP (0.32 mg/kg/inf), MDPBP (0.1 mg/kg/inf), and MDPPP (0.32 mg/kg/inf) under a fixed ratio (FR) 1 schedule of reinforcement; and (2) full dose-response curves for each drug to maintain responding under an FR5 schedule of reinforcement. The average number of days (∼4 days) and percentage (100%) of rats that acquired self-administration was similar for each drug. The observed rank order potency to maintain responding under an FR5 schedule of reinforcement (α-PVP ≈ MDPBP>α-PPP > MDPPP) is consistent with their potencies to inhibit dopamine uptake. These are the first studies to report on the reinforcing effects of the unregulated second-generation cathinones MDPBP, MDPPP, and α-PPP and indicate all three compounds are readily self-administered, suggesting each possesses high potential for abuse. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.'


Subject(s)
Designer Drugs/pharmacology , Reinforcement, Psychology , Self Administration , Analysis of Variance , Animals , Benzodioxoles/chemistry , Benzodioxoles/pharmacology , Conditioning, Operant/drug effects , Designer Drugs/chemistry , Dose-Response Relationship, Drug , Inhibitory Concentration 50 , Male , Methamphetamine/analogs & derivatives , Methamphetamine/chemistry , Methamphetamine/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Reinforcement Schedule , Synthetic Cathinone
17.
Neuropharmacology ; 134(Pt A): 158-166, 2018 05 15.
Article in English | MEDLINE | ID: mdl-28830759

ABSTRACT

Methoxetamine (MXE) is a novel drug of abuse that is structurally similar to phencyclidine (PCP). In the present study, rats were trained to discriminate PCP from saline and substitution tests were performed with arylcyclohexylamines PCP, eticyclidine (PCE), tenocyclidine (TCP), and MXE. PCP and PCE engendered PCP-lever selection in all subjects, whereas MXE and TCP produced PCP-lever selection in animals that did not display behavioral disruption. Last, the substituted tryptamine dipropyltryptamine (DPT) produced moderate PCP-lever selection and elicited behavioral disruption in all subjects at the highest dose tested. Immediately following the final substitution test in the drug discrimination experiment, the same rats and a separate group of experimentally-naïve rats were implanted with osmotic mini-pumps delivering continuous PCP infusions for 11 days. Consistent with PCP withdrawal, disruption of food-maintained operant responding was observed when the pumps were removed, but cumulative MXE administration dose-dependently reversed this effect. A third group of rats self-administered several unit doses of PCP and MXE. Results of the self-administration tests revealed that MXE was a less effective reinforcer than PCP. Lastly, mice were implanted with radiotelemetry probes to simultaneously monitor thermoregulatory and locomotor responses following injections of PCP, PCE, or MXE. All three arylcyclohexylamines elicited dose-dependent hypothermic effects, but only PCP produced increases in locomotor activity. Together, these findings indicate that MXE elicits PCP-like interoceptive effects, but reduced reinforcing and locomotor stimulant effects in vivo. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.'


Subject(s)
Cyclohexanones/pharmacology , Cyclohexylamines/pharmacology , Enzyme Inhibitors/pharmacology , Illicit Drugs/pharmacology , Phencyclidine/pharmacology , Animals , Body Temperature/drug effects , Cyclohexanones/administration & dosage , Cyclohexylamines/administration & dosage , Discrimination, Psychological/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Locomotion/drug effects , Male , Mice , Rats , Rats, Sprague-Dawley , Reinforcement, Psychology , Self Administration , Substance Withdrawal Syndrome/etiology , Telemetry
18.
Neuropsychopharmacology ; 43(4): 761-769, 2018 03.
Article in English | MEDLINE | ID: mdl-28677665

ABSTRACT

Bath salts use is associated with high rates of abuse, toxicity, and death. Bath salt preparations often contain mixtures of drugs including multiple synthetic cathinones (eg, 3,4-methylenedioxypyrovalerone (MDPV) or 3,4-methylenedioxymethcathinone (methylone)) or synthetic cathinones and caffeine; however, little is known about whether interactions among bath salt constituents contribute to the abuse-related effects of bath salts preparations. This study used male Sprague-Dawley rats responding under a progressive ratio schedule to quantify the reinforcing effectiveness of MDPV, methylone, and caffeine, administered alone and as binary mixtures (n=12 per mixture). Each mixture was evaluated at four ratios (10 : 1, 3 : 1, 1 : 1, and 1 : 3) relative to the mean ED50 for each drug alone. Dose-addition analyses were used to determine the predicted, additive effect for each dose pair within each drug mixture. MDPV, methylone, and caffeine maintained responding in a dose-dependent manner, with MDPV being the most potent and effective, and caffeine being the least potent and effective of the three bath salts constituents. High levels of responding were also maintained by each of the bath salts mixtures. Although the nature of the interactions tended toward additivity for most bath salts mixtures, supra-additive (3 : 1 MDPV : caffeine, and 3 : 1 and 1 : 1 methylone : caffeine) and sub-additive (3 : 1, 1 : 1, and 1 : 3 MDPV : methylone) interactions were also observed. Together, these findings demonstrate that the composition of bath salts preparations can have an impact on both their reinforcing potency and effectiveness, and suggest that such interactions among constituent drugs could contribute to the patterns of use and effects reported by human bath salts users.


Subject(s)
Benzodioxoles/administration & dosage , Caffeine/administration & dosage , Central Nervous System Stimulants/administration & dosage , Designer Drugs/administration & dosage , Methamphetamine/analogs & derivatives , Pyrrolidines/administration & dosage , Reinforcement, Psychology , Animals , Behavior, Addictive/chemically induced , Behavior, Addictive/psychology , Benzodioxoles/adverse effects , Caffeine/adverse effects , Central Nervous System Stimulants/adverse effects , Designer Drugs/adverse effects , Dose-Response Relationship, Drug , Male , Methamphetamine/administration & dosage , Methamphetamine/adverse effects , Pyrrolidines/adverse effects , Rats , Rats, Sprague-Dawley , Self Administration , Synthetic Cathinone
19.
Drug Alcohol Depend ; 179: 408-415, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28866386

ABSTRACT

Synthetic cathinones in bath salts products are psychostimulant drugs of abuse, and 3,4-methylenedioxypyrovalerone (MDPV) is a common constituent of these products. Oral MDPV has been show to stimulate locomotor activity but reinforcing, locomotor and appetitive stimulus effects of oral MDPV are unknown. Choice procedures evaluated preference for 0.03, 0.10, 0.30, and 1.00mg/mL MDPV solutions versus 0.10mg/mL quinine solution or water. To verify that oral MDPV produced pharmacological effects, locomotor activity was monitored during and after consumption of water, quinine, or MDPV solutions. Conditioned place preference (CPP) tested the apparent appetitive effects of a preferred concentration of oral MDPV with locomotor stimulant effects (0.30mg/mL), using water as a control, and compared with results from intraperitoneally-administered MDPV. Consumption of MDPV solutions (0.03-1.00mg/mL) was low when the alternative fluid was water, but a history of MDPV consumption increased MDPV choice. When paired with a quinine control solution, MDPV solutions (0.03-0.30mg/mL) were almost exclusively preferred, and treatment with the catecholamine synthesis inhibitor αMPT decreased MDPV choice. Consumption of MDPV concentrations (0.1-1.0mg/mL) stimulated locomotor activity. Chronic (10day) access to 0.30mg/mL MDPV resulted in escalated consumption, but locomotor effects did not systematically change across the access period. Finally, consumption of 0.30mg/mL MDPV elicited CPP with a magnitude similar to the preference observed following intraperitoneal administration of MDPV. Consistent with human abuse patterns, oral MDPV has reinforcing effects in the mouse which are most likely related to its psychostimulant-like pharmacological profile.


Subject(s)
Benzodioxoles/administration & dosage , Central Nervous System Stimulants/pharmacology , Locomotion/drug effects , Pyrrolidines/administration & dosage , Animals , Benzodioxoles/pharmacology , Choice Behavior/drug effects , Humans , Male , Mice , Pyrrolidines/pharmacology , Reinforcement, Psychology , Synthetic Cathinone
20.
Behav Pharmacol ; 28(7): 578-581, 2017 10.
Article in English | MEDLINE | ID: mdl-28570297

ABSTRACT

Synthetic cathinones found in abused 'bath salts' preparations are chiral molecules. Racemic 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinopentiophenone (α-PVP) are two common constituents of these preparations that have been reported to be highly effective reinforcers; however, the relative contribution of each enantiomer toward these effects has not been determined. Thus, male Sprague-Dawley rats were trained to respond for racemic MDPV or α-PVP (n=9/drug), with full dose-response curves for the racemate and the S and R enantiomers of MDPV and α-PVP generated under a progressive ratio schedule of reinforcement. Racemic mixtures of both MDPV and α-PVP as well as each enantiomer maintained responding in a dose-dependent manner, with racemic MDPV and α-PVP being equipotent. The rank order of potency within each drug was S enantiomer>racemate ≫ R enantiomer. Although both enantiomers of α-PVP were as effective as racemic α-PVP, R-MDPV was a slightly less effective reinforcer than both S and racemic MDPV. The results of these studies provide clear evidence that both enantiomers of MDPV and α-PVP function as highly effective reinforcers and likely contribute toward the abuse-related effects of 'bath salts' preparations containing racemic MDPV and/or α-PVP.


Subject(s)
Benzodioxoles/pharmacology , Pentanones/pharmacology , Pyrrolidines/pharmacology , Reinforcement, Psychology , Animals , Benzodioxoles/adverse effects , Dose-Response Relationship, Drug , Drug Combinations , Male , Motor Activity/drug effects , Pentanones/adverse effects , Pyrrolidines/adverse effects , Rats , Rats, Sprague-Dawley , Self Administration , Synthetic Cathinone
SELECTION OF CITATIONS
SEARCH DETAIL