Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Clin Infect Dis ; 76(3): 424-432, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36196586

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has had a devastating impact on global health, the magnitude of which appears to differ intercontinentally: For example, reports suggest that 271 900 per million people have been infected in Europe versus 8800 per million people in Africa. While Africa is the second-largest continent by population, its reported COVID-19 cases comprise <3% of global cases. Although social and environmental explanations have been proposed to clarify this discrepancy, systematic underascertainment of infections may be equally responsible. METHODS: We sought to quantify magnitudes of underascertainment in COVID-19's cumulative incidence in Africa. Using serosurveillance and postmortem surveillance, we constructed multiplicative factors estimating ratios of true infections to reported cases in Africa since March 2020. RESULTS: Multiplicative factors derived from serology data (subset of 12 nations) suggested a range of COVID-19 reporting rates, from 1 in 2 infections reported in Cape Verde (July 2020) to 1 in 3795 infections reported in Malawi (June 2020). A similar set of multiplicative factors for all nations derived from postmortem data points toward the same conclusion: Reported COVID-19 cases are unrepresentative of true infections, suggesting that a key reason for low case burden in many African nations is significant underdetection and underreporting. CONCLUSIONS: While estimating the exact burden of COVID-19 is challenging, the multiplicative factors we present furnish incidence estimates reflecting likely-to-worst-case ranges of infection. Our results stress the need for expansive surveillance to allocate resources in areas experiencing discrepancies between reported cases, projected infections, and deaths.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Malawi , Pandemics , Incidence , Europe
2.
Lancet Microbe ; 3(10): e753-e761, 2022 10.
Article in English | MEDLINE | ID: mdl-36057266

ABSTRACT

BACKGROUND: Assessment of disease severity associated with a novel pathogen or variant provides crucial information needed by public health agencies and governments to develop appropriate responses. The SARS-CoV-2 omicron variant of concern (VOC) spread rapidly through populations worldwide before robust epidemiological and laboratory data were available to investigate its relative severity. Here we develop a set of methods that make use of non-linked, aggregate data to promptly estimate the severity of a novel variant, compare its characteristics with those of previous VOCs, and inform data-driven public health responses. METHODS: Using daily population-level surveillance data from the National Institute for Communicable Diseases in South Africa (March 2, 2020, to Jan 28, 2022), we determined lag intervals most consistent with time from case ascertainment to hospital admission and within-hospital death through optimisation of the distance correlation coefficient in a time series analysis. We then used these intervals to estimate and compare age-stratified case-hospitalisation and case-fatality ratios across the four epidemic waves that South Africa has faced, each dominated by a different variant. FINDINGS: A total of 3 569 621 cases, 494 186 hospitalisations, and 99 954 deaths attributable to COVID-19 were included in the analyses. We found that lag intervals and disease severity were dependent on age and variant. At an aggregate level, fluctuations in cases were generally followed by a similar trend in hospitalisations within 7 days and deaths within 15 days. We noted a marked reduction in disease severity throughout the omicron period relative to previous waves (age-standardised case-fatality ratios were consistently reduced by >50%), most substantial for age strata with individuals 50 years or older. INTERPRETATION: This population-level time series analysis method, which calculates an optimal lag interval that is then used to inform the numerator of severity metrics including the case-hospitalisation and case-fatality ratio, provides useful and timely estimates of the relative effects of novel SARS-CoV-2 VOCs, especially for application in settings where resources are limited. FUNDING: National Institute for Communicable Diseases of South Africa, South African National Government.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Communicable Diseases/epidemiology , Humans , Middle Aged , SARS-CoV-2/genetics , South Africa/epidemiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...