Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 29(23): 6591-6605, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37846617

ABSTRACT

Orbicella faveolata, commonly known as the mountainous star coral, is a dominant reef-building species in the Caribbean, but populations have suffered sharp declines since the 1980s due to repeated bleaching and disease-driven mortality. Prior research has shown that inshore adult O. faveolata populations in the Florida Keys are able to maintain high coral cover and recover from bleaching faster than their offshore counterparts. However, whether this origin-specific variation in thermal resistance is heritable remains unclear. To address this knowledge gap, we produced purebred and hybrid larval crosses from O. faveolata gametes collected at two distinct reefs in the Upper Florida Keys, a nearshore site (Cheeca Rocks, CR) and an offshore site (Horseshoe Reef, HR), in two different years (2019, 2021). We then subjected these aposymbiotic larvae to severe (36°C) and moderate (32°C) heat challenges to quantify their thermal tolerance. Contrary to our expectation based on patterns of adult thermal tolerance, HR purebred larvae survived better and exhibited gene expression profiles that were less driven by stress response under elevated temperature compared to purebred CR and hybrid larvae. One potential explanation could be the compromised reproductive output of CR adult colonies due to repeated summer bleaching events in 2018 and 2019, as gametes originating from CR in 2019 contained less storage lipids than those from HR. These findings provide an important counter-example to the current selective breeding paradigm, that more tolerant parents will yield more tolerant offspring, and highlight the importance of adopting a holistic approach when evaluating larval quality for conservation and restoration purposes.


Subject(s)
Anthozoa , Coral Reefs , Humans , Animals , Anthozoa/physiology , Hot Temperature , Florida
2.
Microbiologyopen ; 12(3): e1354, 2023 06.
Article in English | MEDLINE | ID: mdl-37379422

ABSTRACT

Sponges perform important ecosystem functions, host diverse microbial symbiont communities (microbiomes), and have been increasing in density on Caribbean coral reefs over the last decade. Sponges compete for space in coral reef communities through both morphological and allelopathic strategies, but no studies of microbiome impacts during these interactions have been conducted. Microbiome alterations mediate spatial competition in other coral reef invertebrates and may similarly impact competitive outcomes for sponges. In this study, we characterized the microbiomes of three common Caribbean sponges (Agelas tubulata, Iotrochota birotulata, and Xestospongia muta) observed to naturally interact spatially in Key Largo, Florida (USA). For each species, replicate samples were collected from sponges in contact with neighbors at the site of contact (contact) and distant from the site of contact (no contact), and from sponges spatially isolated from neighbors (control). Next-generation amplicon sequencing (V4 region of 16S rRNA) revealed significant differences in microbial community structure and diversity among sponge species, but no significant effects were observed within sponge species across all contact states and competitor pairings, indicating no large community shifts in response to direct contact. At a finer scale, particular symbiont taxa (operational taxonomic units at 97% sequence identity, OTUs) were shown to decrease significantly in some interaction pairings, suggesting localized effects for specific sponge competitors. Overall, these results revealed that direct contact during spatial competition does not significantly alter microbial community composition or structure of interacting sponges, suggesting that allelopathic interactions and competitive outcomes are not mediated by microbiome damage or destabilization.


Subject(s)
Microbiota , Porifera , Animals , Coral Reefs , RNA, Ribosomal, 16S/genetics , Caribbean Region , Florida
3.
Sci Rep ; 13(1): 1355, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693980

ABSTRACT

Coral reefs are declining worldwide, yet some coral populations are better adapted to withstand reductions in pH and the rising frequency of marine heatwaves. The nearshore reef habitats of Palau, Micronesia are a proxy for a future of warmer, more acidic oceans. Coral populations in these habitats can resist, and recover from, episodes of thermal stress better than offshore conspecifics. To explore the physiological basis of this tolerance, we compared tissue biomass (ash-free dry weight cm-2), energy reserves (i.e., protein, total lipid, carbohydrate content), and several important lipid classes in six coral species living in both offshore and nearshore environments. In contrast to expectations, a trend emerged of many nearshore colonies exhibiting lower biomass and energy reserves than colonies from offshore sites, which may be explained by the increased metabolic demand of living in a warmer, acidic, environment. Despite hosting different dinoflagellate symbiont species and having access to contrasting prey abundances, total lipid and lipid class compositions were similar in colonies from each habitat. Ultimately, while the regulation of colony biomass and energy reserves may be influenced by factors, including the identity of the resident symbiont, kind of food consumed, and host genetic attributes, these independent processes converged to a similar homeostatic set point under different environmental conditions.


Subject(s)
Anthozoa , Animals , Anthozoa/physiology , Biomass , Coral Reefs , Ecosystem , Lipids
4.
Microbiome ; 7(1): 124, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31466521

ABSTRACT

BACKGROUND: Sponges are important suspension-feeding members of reef communities, with the collective capacity to overturn the entire water column on shallow Caribbean reefs every day. The sponge-loop hypothesis suggests that sponges take up dissolved organic carbon (DOC) and, via assimilation and shedding of cells, return carbon to the reef ecosystem as particulate organic carbon (POC). Sponges host complex microbial communities within their tissues that may play a role in carbon and nutrient cycling within the sponge holobiont. To investigate this relationship, we paired microbial community characterization (16S rRNA analysis, Illumina Mi-Seq platform) with carbon (DOC, POC) and nutrient (PO4, NOx, NH4) flux data (specific filtration rate) for 10 common Caribbean sponge species at two distant sites (Florida Keys vs. Belize, ~ 1203 km apart). RESULTS: Distance-based linear modeling revealed weak relationships overall between symbiont structure and carbon and nutrient flux, suggesting that the observed differences in POC, DOC, PO4, and NOx flux among sponges are not caused by variations in the composition of symbiont communities. In contrast, significant correlations between symbiont structure and NH4 flux occurred consistently across the dataset. Further, several individual symbiont taxa (OTUs) exhibited relative abundances that correlated with NH4 flux, including one OTU affiliated with the ammonia-oxidizing genus Cenarchaeum. CONCLUSIONS: Combined, these results indicate that microbiome structure is uncoupled from sponge carbon cycling and does not explain variation in DOC uptake among Caribbean coral reef sponges. Accordingly, differential DOC assimilation by sponge cells or stable microbiome components may ultimately drive carbon flux in the sponge holobiont.


Subject(s)
Carbon/metabolism , Coral Reefs , Microbiota , Nutrients/metabolism , Porifera/microbiology , Animals , Archaea/classification , Archaea/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Belize , Caribbean Region , Florida
5.
FEMS Microbiol Lett ; 364(11)2017 06 15.
Article in English | MEDLINE | ID: mdl-28520957

ABSTRACT

Marine sponges have been shown to harbor diverse microbial symbiont communities that play key roles in host functioning, yet little is known about how anthropogenic disturbances impact sponge-microbe interactions. The Mediterranean sponge Crambe crambe is known to accumulate heavy metals in polluted harbors. In this study, we investigated whether the microbiome of C. crambe differed between sponges inhabiting a polluted harbor in Blanes (Spain) and a nearby (<1 km) natural environment. Triplicate sponge and ambient seawater samples were collected from each site and the microbial composition of each sample was determined by 16S rRNA gene sequence analysis (Illumina Hi-Seq platform). No significant differences in the diversity or structure of microbial communities in C. crambe were detected between habitats, while a significant difference in community structure was observed in ambient seawater inside and outside of the polluted harbor. The microbiome of C. crambe was clearly differentiated from free-living seawater microbes and dominated by Proteobacteria, specifically a single betaproteobacterium that accounted for >86% of all sequence reads. These results indicate that sponge microbiomes exhibit greater stability and pollution tolerance than their free-living microbial counterparts, potentially mitigating the effects of pollutants on coastal marine communities.


Subject(s)
Betaproteobacteria/isolation & purification , Crambe Sponge/microbiology , Microbiota/genetics , Phylogeny , Animals , Bacterial Typing Techniques , Betaproteobacteria/classification , DNA, Bacterial/genetics , Proteobacteria/classification , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Spain , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...