Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(8): 4125-4139, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38332749

ABSTRACT

Color centers in hexagonal boron nitride (hBN) have attracted considerable attention due to their remarkable optical properties enabling robust room temperature photonics and quantum optics applications in the visible spectral range. On the other hand, identification of the microscopic origin of color centers in hBN has turned out to be a great challenge that hinders the in-depth theoretical characterization, on-demand fabrication, and development of integrated photonic devices. This is also true for the blue emitter, which is a result of irradiation damage in hBN, emitting at 436 nm wavelength with desirable properties. Here, we propose the negatively charged nitrogen split interstitial defect in hBN as a plausible microscopic model for the blue emitter. To this end, we carried out a comprehensive first-principles theoretical study of the nitrogen interstitial. We carefully analyzed the accuracy of first-principles methods and showed that the commonly used HSE hybrid exchange-correlation functional fails to describe the electronic structure of this defect. Using the generalized Koopman's theorem, we fine-tuned the functional and obtained a zero-phonon photoluminescence (ZPL) energy in the blue spectral range. We showed that the defect exhibits a high emission rate in the ZPL line and features a characteristic phonon side band that resembles the blue emitter's spectrum. Furthermore, we studied the electric field dependence of the ZPL and numerically showed that the defect exhibits a quadratic Stark shift that is perpendicular to plane electric fields, making the emitter insensitive to electric field fluctuations in the first order. Our work emphasizes the need for assessing the accuracy of common first-principles methods in hBN and exemplifies a workaround methodology. Furthermore, our work is a step towards understanding the structure of the blue emitter and utilizing it in photonics applications.

2.
J Phys Chem A ; 126(15): 2417-2429, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35394778

ABSTRACT

In this work, we implemented the embedded cluster reference interaction site model (EC-RISM) originally developed by Kloss, Heil, and Kast (J. Phys. Chem. B 2008, 112, 4337-4343). This method combines quantum mechanical calculations with the 3D reference interaction site model (3D-RISM). Numerous options, such as buffer, grid space, basis set, charge model, water model, closure relation, and so forth, were investigated to find the best settings. Additionally, the small point charges, which are derived from the solvent distribution from the 3D-RISM solution to represent the solvent in the QM calculation, were neglected to reduce the overhead without the loss of accuracy. On the MNSOL[a], MNSOL, and FreeSolv databases, our implemented and optimized method provides solvation free energies in water with 5.70, 6.32, and 6.44 kJ/mol root-mean-square deviations, respectively, but with different settings, 5.22, 6.08, and 6.63 kJ/mol can also be achieved. Only solvent models containing fitting parameters, like COSMO-RS and EC-RISM with universal correction and directly used electrostatic potential, perform better than our EC-RISM implementation with atomic charges.

3.
J Phys Chem C Nanomater Interfaces ; 125(16): 8551-8561, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-34084263

ABSTRACT

The goal of this study is to provide insight into the mechanism of the oxygen reduction reaction (ORR) on N-doped graphene surfaces. Using density functional theory and a computational hydrogen electrode model, we studied the energetics of the ORR intermediates, the effect of the position of the reaction site, and the effect of the position of the N modification relative to the active site on model graphene surfaces containing one or two N atoms. We found that scaling relations can be derived for N-doped graphenes as well, but the multiplicity of the surface should be taken into account. On the basis of the scaling relations between intermediates OOH* and OH*, the minimal overpotential is 0.33 V. Analysis of the data showed that N atoms in the meta position usually decrease the adsorption energy, but those in the ortho position aid the adsorption. The outer position on the zigzag edge of the graphene sheet also promotes the adsorption of oxygenated species, while the inner position hinders it. Looking at the most effective active sites, our analysis shows that the minimal overpotential can be approached with various doping arrangements, which also explains the contradicting results in the literature. The dissociative pathway was also investigated, but we found only one possible active site; therefore, this pathway is not really viable. However, routes not preferred thermodynamically pose the possibility of breaking the theoretical limit of the overpotential of the associative pathway.

4.
J Chem Phys ; 152(7): 074107, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32087669

ABSTRACT

MRCC is a package of ab initio and density functional quantum chemistry programs for accurate electronic structure calculations. The suite has efficient implementations of both low- and high-level correlation methods, such as second-order Møller-Plesset (MP2), random-phase approximation (RPA), second-order algebraic-diagrammatic construction [ADC(2)], coupled-cluster (CC), configuration interaction (CI), and related techniques. It has a state-of-the-art CC singles and doubles with perturbative triples [CCSD(T)] code, and its specialties, the arbitrary-order iterative and perturbative CC methods developed by automated programming tools, enable achieving convergence with regard to the level of correlation. The package also offers a collection of multi-reference CC and CI approaches. Efficient implementations of density functional theory (DFT) and more advanced combined DFT-wave function approaches are also available. Its other special features, the highly competitive linear-scaling local correlation schemes, allow for MP2, RPA, ADC(2), CCSD(T), and higher-order CC calculations for extended systems. Local correlation calculations can be considerably accelerated by multi-level approximations and DFT-embedding techniques, and an interface to molecular dynamics software is provided for quantum mechanics/molecular mechanics calculations. All components of MRCC support shared-memory parallelism, and multi-node parallelization is also available for various methods. For academic purposes, the package is available free of charge.


Subject(s)
Density Functional Theory , Proteins/chemistry , Water/chemistry , Electrons , Molecular Dynamics Simulation , Molecular Structure
5.
J Phys Chem A ; 123(18): 4057-4067, 2019 May 09.
Article in English | MEDLINE | ID: mdl-30977653

ABSTRACT

The goal of this study is to give reliable and accurate thermochemical data for uracil, thymine, cytosine, and adenine. The gas-phase heats of formation of these compounds were determined with the diet-HEAT-F12 protocol, which uses explicitly correlated coupled-cluster calculations along with anharmonic vibrational, scalar relativistic, and diagonal Born-Oppenheimer corrections. The thermochemically relevant tautomers of cytosine were also investigated. To derive heats of formation in the gas and solid phases as well as sublimation enthalpies, the thermochemical network approach was utilized, i.e., the available literature data were collected, reviewed, and combined with our theoretical calculations. Solvation free energies were also determined with various methods and compared to experimental data.


Subject(s)
Adenine/chemistry , Cytosine/chemistry , Temperature , Thymine/chemistry , Uracil/chemistry , Quantum Theory
6.
J Phys Chem A ; 122(28): 5993-6006, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-29939026

ABSTRACT

Reliable heats of formation are reported for numerous fluorinated and chlorinated methane and ethane derivatives by means of an accurate thermochemical protocol, which involves explicitly correlated coupled-cluster calculations augmented with anharmonic, scalar relativistic, and diagonal Born-Oppenheimer corrections. The theoretical results, along with additional experimental data, are further enhanced with the help of the thermochemical network approach. For 28 species, out of 50, this study presents the best estimates, and discrepancies with previous reports are also highlighted. Furthermore, the effects of the less accurate theoretical data on the results yielded by thermochemical networks are discussed.

7.
J Chem Theory Comput ; 13(9): 4193-4204, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28777574

ABSTRACT

A moderate-cost ab initio composite model chemistry including the explicitly correlated CCSD(T*)(F12) and conventional coupled-cluster methods up to perturbative quadruple excitations along with correlation consistent basis sets is developed. The model, named diet-HEAT-F12, is also augmented with diagonal Born-Oppenheimer and scalar relativistic corrections. The methods and basis sets used for the calculation of the individual components are selected to reproduce, as close as possible, without using any fitted parameters, the benchmark HEAT contributions. A well-defined recipe for calculating size-dependent 95% confidence intervals was also worked out for the model. The reliability of the protocol was checked using the W4-11 data set as well as a disjoint set of 23 accurate atomization energies collected from the literature and obtained by the procedure of Feller, Peterson, and Dixon. The best error statistics for the test set was yielded by the diet-HEAT-F12 protocol among the models W3X, W3X-L, and W3-F12 considered.

8.
J Phys Chem A ; 121(5): 1153-1162, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28071901

ABSTRACT

An accurate coupled-cluster (CC) based model chemistry was applied to calculate reliable thermochemical quantities for hydrofluorocarbon derivatives including radicals 1-fluoroethyl (CH3-CHF), 1,1-difluoroethyl (CH3-CF2), 2-fluoroethyl (CH2F-CH2), 1,2-difluoroethyl (CH2F-CHF), 2,2-difluoroethyl (CHF2-CH2), 2,2,2-trifluoroethyl (CF3-CH2), 1,2,2,2-tetrafluoroethyl (CF3-CHF), and pentafluoroethyl (CF3-CF2). The model chemistry used contains iterative triple and perturbative quadruple excitations in CC theory, as well as scalar relativistic and diagonal Born-Oppenheimer corrections. To obtain heat of formation values with better than chemical accuracy perturbative quadruple excitations and scalar relativistic corrections were inevitable. Their contributions to the heats of formation steadily increase with the number of fluorine atoms in the radical reaching 10 kJ/mol for CF3-CF2. When discrepancies were found between the experimental and our values it was always possible to resolve the issue by recalculating the experimental result with currently recommended auxiliary data. For each radical studied here this study delivers the best heat of formation as well as entropy data.

SELECTION OF CITATIONS
SEARCH DETAIL
...