Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 10(5): 956-968, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38799662

ABSTRACT

We report a blueprint for the rational design of G protein coupled receptor (GPCR) ligands with a tailored functional response. The present study discloses the structure-based design of cannabinoid receptor type 2 (CB2R) selective inverse agonists (S)-1 and (R)-1, which were derived from privileged agonist HU-308 by introduction of a phenyl group at the gem-dimethylheptyl side chain. Epimer (R)-1 exhibits high affinity for CB2R with Kd = 39.1 nM and serves as a platform for the synthesis of a wide variety of probes. Notably, for the first time these fluorescent probes retain their inverse agonist functionality, high affinity, and selectivity for CB2R independent of linker and fluorophore substitution. Ligands (S)-1, (R)-1, and their derivatives act as inverse agonists in CB2R-mediated cAMP as well as G protein recruitment assays and do not trigger ß-arrestin-receptor association. Furthermore, no receptor activation was detected in live cell ERK1/2 phosphorylation and Ca2+-release assays. Confocal fluorescence imaging experiments with (R)-7 (Alexa488) and (R)-9 (Alexa647) probes employing BV-2 microglial cells visualized CB2R expressed at endogenous levels. Finally, molecular dynamics simulations corroborate the initial docking data in which inverse agonists restrict movement of toggle switch Trp2586.48 and thereby stabilize CB2R in its inactive state.

2.
J Am Chem Soc ; 145(28): 15094-15108, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37401816

ABSTRACT

Pharmacological modulation of cannabinoid receptor type 2 (CB2R) holds promise for the treatment of neuroinflammatory disorders, such as Alzheimer's disease. Despite the importance of CB2R, its expression and downstream signaling are insufficiently understood in disease- and tissue-specific contexts. Herein, we report the first ligand-directed covalent (LDC) labeling of CB2R enabled by a novel synthetic strategy and application of platform reagents. The LDC modification allows visualization and study of CB2R while maintaining its ability to bind other ligands at the orthosteric site. We employed in silico docking and molecular dynamics simulations to guide probe design and assess the feasibility of LDC labeling of CB2R. We demonstrate selective, covalent labeling of a peripheral lysine residue of CB2R by exploiting fluorogenic O-nitrobenzoxadiazole (O-NBD)-functionalized probes in a TR-FRET assay. The rapid proof-of-concept validation with O-NBD probes inspired incorporation of advanced electrophiles suitable for experiments in live cells. To this end, novel synthetic strategies toward N-sulfonyl pyridone (N-SP) and N-acyl-N-alkyl sulfonamide (NASA) LDC probes were developed, which allowed covalent delivery of fluorophores suitable for cellular studies. The LDC probes were characterized by a radioligand binding assay and TR-FRET experiments. Additionally, the probes were applied to specifically visualize CB2R in conventional and imaging flow cytometry as well as in confocal fluorescence microscopy using overexpressing and endogenously expressing microglial live cells.


Subject(s)
Fluorescent Dyes , Signal Transduction , Ligands , Protein Binding , Fluorescent Dyes/chemistry , Receptors, Cannabinoid
SELECTION OF CITATIONS
SEARCH DETAIL
...