Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 631(Pt B): 78-88, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36395629

ABSTRACT

HYPOTHESIS: The high surface tension of liquid metal (LM) causes interface incompatibility and poor bonding strength with many substrates. Fine adjustment towards the properties of the surface area is sufficient to introduce strong bonding. Hence, we hypothesize that the interlocking structure using hydrophilic polyvinyl alcohol (PVA) as a "bridge" should be helpful for tight interfacial bonding of LM with polymeric substrates, thus achieving high-performance LM/polymer membranes, which have wide applications in the field of soft sensors and robotics. EXPERIMENTS: The bulk EGaIn was fabricated into LM nanoparticles (LMNPs@PVA) solution. Then, PVA molecules were "doped" into the surface crosslink of the plasma treated polymer substrate by an interfacial penetrating method. Afterward, the solution was evenly dropped on the surface of the treated substrate to obtain the LMNP/polymer membrane after the water evaporated. Photothermal actuators were fabricated based on the membranes. FINDINGS: During the interlocking structure, PVA macromolecules could be doped and trapped onto the top surfaces of various polymer substrates as binding "bridges" between the LMNPs and the matrix materials. The achieved LMNP membrane exhibites satisfactory bonding strength, durability and water-assisted erase-reprint, which can be used as soft photothermal actuators with remote laser control.


Subject(s)
Metal Nanoparticles , Polymers , Metals , Polyvinyl Alcohol , Water
2.
Soft Robot ; 9(6): 1098-1107, 2022 12.
Article in English | MEDLINE | ID: mdl-35486839

ABSTRACT

Jellyfish have attracted worldwide attention owing to their fantastic moving styles, which also inspired development in soft robotics to meet the demands of underwater surveillance. In this study, a soft robotic jellyfish integrated liquid metal coil, and magnetic field is proposed for the first time to mimic the soft rowing propulsion of oblate jellyfish. The soft robotic jellyfish is actuated by the entirely soft electromagnetic actuators that enabled the gentle motion. Through conceptual experiments and computational fluid dynamics simulations, we systematically interpreted the mechanism of this robotic jellyfish and various factors to dominate its movement behaviors, which involve vortex formation and ascending modalities. Besides, underwater monitoring and bio-friendliness of robotic jellyfish were also demonstrated to illustrate its potential application scenarios and gentle motion characteristics. This study will help to broaden the vistas for liquid metal enabled bionic robotics in a wide range of underwater applications.


Subject(s)
Robotics , Scyphozoa , Animals , Biomimetics , Swimming , Hydrodynamics , Metals
3.
RSC Adv ; 9(60): 35102-35108, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-35530692

ABSTRACT

A one-step strategy for fabricating flexible conductors via phase separation is proposed, wherein, the liquid metal was implanted into polydimethylsiloxane, whose viscosity was changed using hexane. Such self-encapsulating composite exhibited good electronic and mechanical stability under mechanical cycles with no significant leaking of droplets during the testing process.

SELECTION OF CITATIONS
SEARCH DETAIL
...