Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
ACS Sens ; 9(1): 139-148, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38096168

ABSTRACT

The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensional plane, resulting in excellent conductivity and high carrier concentration. A one-step chemical method is applied to synthesize defect-rich Au-SnO2 in an ultrathin nanosheet form (thickness of 2-3 nm). The strong interaction between Au and SnO2 via the Au-O-Sn bonding and the catalytic effect of Au can prolong the service life via decreasing the optimal operating temperature (55 °C) and promote the Au-SnO2 sensor to exclusively detect formaldehyde at the ppb level (300 ppb). The experimental findings along with theoretical study reveal that Au nanoparticles have a different effect on the competitive adsorption and chemical reaction over the surface of the Au-SnO2 with formaldehyde and other interfering VOC gases, such as methanol, ethanol, and acetone. This study provides mechanistic insights into the correlation between operating temperature and the performance of the Au-SnO2 chemiresistive sensor. This work allows the development of highly efficient and stable electrochemical sensors to detect VOC gases at room temperature in the future.


Subject(s)
Metal Nanoparticles , Volatile Organic Compounds , Gold , Formaldehyde , Gases
2.
Cancer Innov ; 2(6): 488-499, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125766

ABSTRACT

With the deepening of the genome project study, attention on noncoding RNAs is increasing. Long noncoding RNAs (lncRNAs) have become a new research hotspot. A growing number of studies have revealed that lncRNAs are involved in tumorigenesis and tumor suppressor pathways. Aberrant expressions of lncRNAs have been found in a variety of human tumors including hepatocellular carcinoma (HCC). In this review, we provide a brief introduction to lncRNA and highlight recent research on the functions and clinical significance of lncRNAs in HCC.

3.
Phys Rev Lett ; 130(3): 036203, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36763396

ABSTRACT

Flat bands (FBs), presenting a strongly interacting quantum system, have drawn increasing interest recently. However, experimental growth and synthesis of FB materials have been challenging and have remained elusive for the ideal form of monolayer materials where the FB arises from destructive quantum interference as predicted in 2D lattice models. Here, we report surface growth of a self-assembled monolayer of 2D hydrogen-bond (H-bond) organic frameworks (HOFs) of 1,3,5-tris(4-hydroxyphenyl)benzene (THPB) on Au(111) substrate and the observation of FB. High-resolution scanning tunneling microscopy or spectroscopy shows mesoscale, highly ordered, and uniform THPB HOF domains, while angle-resolved photoemission spectroscopy highlights a FB over the whole Brillouin zone. Density-functional-theory calculations and analyses reveal that the observed topological FB arises from a hidden electronic breathing-kagome lattice without atomically breathing bonds. Our findings demonstrate that self-assembly of HOFs provides a viable approach for synthesis of 2D organic topological materials, paving the way to explore many-body quantum states of topological FBs.

4.
Small ; 19(17): e2207111, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36599616

ABSTRACT

Chirality transfer is of vital importance that dominates the structure and functionality of biological systems and living matters. External physical stimulations, e.g. polarized light and mechanical forces, can trigger the chirality symmetry breaking, leading to the appearance of the enantiomeric entities created from a chiral self-assembly of achiral molecule. Here, several 2D assemblies with different chirality, synthesized on Au(111) surface by using achiral building blocks - glycylglycine (digly), the simplest polypeptide are reported. By delicately tuning the kinetic factors, i.e., one-step slow/rapid deposition, or stepwise slow deposition with mild annealing, achiral square hydrogen-bond organic frameworks (HOF), homochiral rhombic HOF and racemic rectangular assembly are achieved, respectively. Chirality induction and related symmetry broken in assemblies are introduced by the handedness (H-bond configurations in principle) of the assembled motifs and then amplified to the entire assemblies via the interaction between motifs. The results show that the chirality transfer and induction of biological assemblies can be tuned by altering the kinetic factors instead of applying external forces, which may offer an in-depth understanding and practical approach to peptide chiral assembly on the surfaces and can further facilitate the design of desired complex biomolecular superstructures.

5.
ACS Sens ; 7(4): 1201-1212, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35362946

ABSTRACT

To avoid carcinogenicity, formaldehyde gas, currently being only detected at higher operating temperatures, should be selectively detected in time with ppb concentration sensitivity in a room-temperature indoor environment. This is achieved in this work through introducing oxygen vacancies and Pt clusters on the surface of In2O3 to reduce the optimal operating temperature from 120 to 40 °C. Previous studies have shown that only water participates in the competitive adsorption on the sensor surface. Here, we experimentally confirm that the adsorbed water on the fabricated sensor surface is consumed via a chemical reaction due to the strong interaction between the oxygen vacancies and Pt clusters. Therefore, the long-term stability of formaldehyde gas detection is improved. The results of theoretical calculations in this work reveal that the excellent formaldehyde gas detection of Pt/In2O3-x originates from the electron enrichment due to the surface oxygen vacancies and the molecular adsorption and activation ability of Pt clusters on the surface. The developed Pt/In2O3-x sensor has potential use in the ultraefficient, low-temperature, highly sensitive, and stable detection of indoor formaldehyde at an operating temperature as low as room temperature.


Subject(s)
Oxygen , Platinum , Formaldehyde , Platinum/chemistry , Temperature , Water
6.
J Phys Chem Lett ; 13(6): 1578-1586, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35138106

ABSTRACT

The development of patterning materials ("resists") at the nanoscale involves two distinct trends: one is toward high sensitivity and resolution for miniaturization, the other aims at functionalization of the resists to realize bottom-up construction of distinct nanoarchitectures. Patterning of carbon nanostructures, a seemingly ideal application for organic functional resists, has been highly reliant on complicated pattern transfer processes because of a lack of patternable precursors. Herein, we present a fullerene-metal coordination complex as a fabrication material for direct functional patterning of sub-10 nm metal-containing carbon structures. The attachment of one platinum atom per fullerene molecule not only leads to significant improvement of sensitivity and resolution but also enables stable atomic dispersion of the platinum ions within the carbon matrix, which may gain fundamentally new interest in functional patterning of hierarchical carbon nanostructures.

7.
Nanoscale ; 14(4): 1333-1339, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35014655

ABSTRACT

Supramolecular tessellation with self-synthesized (C60)7 tiles is achieved based on a cooperative interaction between co-adsorbed C60 and octanethiol (OT) molecules. Tile synthesis and tiling take place simultaneously on a gold substrate leading to a two-dimensional lattice of (C60)7 tiles with OT as the binder molecule filling the gaps between the tiles. This supramolecular tessellation is featured with simultaneous on-site synthesis of tiles and self-organized tiling. In the absence of specific functional groups, the key to ordered tiling for the C60/OT system is the collective van der Waals (vdW) interaction among a large number of molecules. This bicomponent system herein offers a way for the artificial synthesis of 2D complex vdW supramolecular tessellations.

8.
J Colloid Interface Sci ; 611: 137-148, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34942487

ABSTRACT

Converting CO2 into chemical energy by using solar energy is an environmental strategy to achieve carbon neutrality. In this paper, two dimensionality (2D) SrTiO3-x nanosheets with oxygen vacancies were synthesized successfully. Oxygen vacancies will generate defect levels in the band structure of SrTiO3-x. So, SrTiO3-x nanosheets have good photocatalytic CO2 reduction performance under visible light. In order to further improve its photocatalytic efficiency, Bi was used to dope Sr site and Ti site in SrTiO3-x nanosheets respectively. It is found that Sr site is the adsorption site of CO2 molecules. When Bi replaced Sr, CO2 adsorption on the surface of SrTiO3-x nanosheets was weakened. When Bi replaced Ti, there has no effect on CO2 adsorption. Due to the synergistic effect of Bi doping, oxygen vacancies, and Sr active site, the 1.0% Bi-doped Ti site in SrTiO3-x (1.0% Bi-Ti-STO) had the best photocatalytic performance under visible light (λ ≥ 420 nm). CO and CH4 yields were 5.58 umol/g/h and 0.36 umol/g/h. Photocatalytic CO2 reduction path has always been the focus of exploration. The in-situ FTIR spectrum proved the step of photocatalytic CO2 reduction and COO- and COOH are important intermediates in the photocatalytic CO2 reaction.

9.
ACS Omega ; 6(28): 18269-18280, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34308058

ABSTRACT

Half-Heusler alloys have recently received extensive attention because of their promising thermoelectric (TE) properties and great potential for applications requiring efficient thermoelectricity. Although the conversion efficiency of these materials can be greatly improved by doping, it is still far away from the real-life applications. Therefore, search for better parent TE compounds is deemed urgent. Using a high-throughput search method based on first-principles calculations in newly proposed 378 half-Heusler alloys, we identify nine nickel-based half-Heusler semiconductors as candidates and systematically study their mechanical, electronic, and transport properties. Their mechanical and dynamical stabilities are verified based on the calculated elastic constants and phonon spectra. The electronic structure calculations indicate the existence of direct energy gaps in the NiVZ (Z = Al, Ga, and In) and indirect energy gaps in the NiTiZ (Z = Si, Ge, and Sn) and NiScZ (Z = P, As, and Sb) compounds. Among them, NiVAl, NiVGa, and NiVIn exhibit a sharp slope of density of states near the Fermi level, which is predicted to be essential for a high TE performance. Further investigation on carrier concentration and temperature dependence of TE properties shows the high power factors of NiVAl, NiVGa, and NiVIn, which are responsible for their high figure of merit values. The highest maximum power factor of 5.152 mW m-1 K-2 and figure of merit of 0.309 are predicted for pristine half-Heusler NiVIn, which are larger than the values of some known pristine and doped half-Heusler TE materials. Our work opens up new avenues for rationally searching better TE materials among half-Heusler alloys for applications in fields requiring efficient thermoelectricity.

10.
J Colloid Interface Sci ; 587: 385-392, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33360908

ABSTRACT

The bottleneck of electrochemical water splitting is the sluggish kinetics of oxygen evolution reaction (OER). Layered double hydroxides (LDHs) have been proposed as active and affordable electrocatalysts in OER. It has been reported that the activity of LDHs can be effectively tuned by doping of other metals. Despite previous experimental synthesis and improved catalytic performance, the in-depth OER mechanism on metal doped LDHs remains ambiguous. In the present work, transition metals (Cr, Mn and Co) doped NiFe LDHs were designed to investigate the doping effect in OER by both experimental analysis and density functional theory calculations. Based on experimental results, the intrinsic OER activity is Cr-NiFe LDHs > Co-NiFe LDHs > Mn-NiFe LDHs > NiFe LDHs, while the enhanced catalytic performance upon doping can be attributed to the interface effect, which results in the tuning of the binding energies of the intermediate states in OER.

11.
Small ; 17(4): e2006881, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33373091

ABSTRACT

The energy conversion efficiency of water electrolysis is determined by the activity of selected catalysts. Ideal catalysts should possess not only porous architecture for high-density assembly of active sites but also a subtle electronic configuration for the optimized activity at each site. In this context, the development of stable porous hosting materials that allow the incorporation of various metal elements is highly desirable for both experimental optimization and theoretical comparison/prediction. Herein, MOF-derived spongy nanosheet arrays constructed by assembly of carbon encapsulated hetero-metal doped Ni2 P nanoparticles is presented as a superior bifunctional electrocatalyst for water splitting. This hierarchical structure can be stably retained when secondary metal dopants are introduced, providing a flexible platform for electronic modulation. The catalytic origin of activity enhancement via metal (Fe, Cr, and Mn) doping is deciphered through experimental and theoretical investigations. Combining the advantages in both morphological and electronic structures, the optimized catalyst NiMn-P exhibits remarkable activity in both hydrogen and oxygen evolution in the alkaline media, with an ultrasmall cell voltage of 1.49 V (at 10 mA cm-2 ) and high durability for at least 240 h.

12.
J Phys Chem Lett ; 11(22): 9850-9855, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33170716

ABSTRACT

The conversion of light alkanes to olefins is crucial to the chemical industry. The quest for improved catalytic performance for this conversion is motivated by current drawbacks including: expensive noble metal catalysts, poor conversion, low selectivity, and fast decay of efficiency. The in situ visualization of complex catalysis at the atomic level is therefore a major advance in the rational framework upon building the future catalysts. Herein, the catalytic C-H bond activations of ethylbenzene on TiO2(110)-(1 × 1) were explored with high-resolution scanning tunneling microscopy and first-principles calculations. We report that the first C-H bond scission is a two-step process that can be triggered by either heat or ultraviolet light at 80 K, with near 100% selectivity of ß-CH bond cleavage. This work provides fundamental understanding of C-H bonds cleavage of ethylbenzene on metal oxides, and it may promote the design of new catalysts for selective styrene production under mild conditions.

13.
Nanotechnology ; 31(25): 254002, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32050192

ABSTRACT

A TiO2 with exposed (001) facets/Bi4O5Br2 nanosheets heterojunction (TNS/BOB) was fabricated via a hydrothermal and electrostatic self-assembly method. The photocatalytic activity for NO removal was evaluated under simulated solar light irradiation. Through optimizing the content of TNS nanosheets, the photo-oxidative NO removal rate of 15% TNS/BOB was increased by up to 54.3%. This value is much higher than that of the individual components TNS (31.1%) and BOB (37.7%). Through capturing experiments and electron spin resonance (ESR) measurements, the main active species in the photocatalytic process were identified as ·[Formula: see text] and ·OH. Discrete Fourier transform computation results and ESR tests revealed that the photo-induced electrons in TNS should recombine with the holes in BOB, leading to effectively promoted charge separation at the TNS/BOB interface through the Z-type charge transfer. This work showed that with appropriate facet control and heterojunction design TiO2 can be used as an effective visible-light photocatalyst material.

14.
J Hazard Mater ; 382: 121121, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31491668

ABSTRACT

To fully utilize the solar light, photocatalyst with broad spectrum response from UV to near-infrared (NIR) is desirable. In this work, ternary mixed valent Bi2O4-Bi4O7-BiO2-x with rich oxygen vacancy has been synthesized through one-pot hydrothermal treatment of NaBiO3. The results showed that through adjusting the hydrothermal conditions, oxygen vacancy-rich Bi2O4-Bi4O7-BiO2-x nanocomposites with much higher efficiency than single or mixed bismuth oxides (Bi2O4, Bi4O7, BiO2-x and Bi4O7-BiO2-x,) can be synthesized for photocatalytic degradation of bisphenol A (BPA) under UV, visible, and NIR light irradiation. In addition, the liquid chromatography-mass spectrometer (LC-MS) characterization demonstrated that BPA was oxidized to 4-isopropenyphenol first and the rings were opened sequentially under NIR light irradiation. Further detection of reactive species indicated that holes, O2-, and OH were the main oxidizing species in the degradation system. The experimental observations and density functional theory (DFT) calculations suggested that both type-II and the Z-scheme charge transfer with oxygen vacancies as electrons and holes mediators were formed at the interfaces of Bi2O4, Bi4O7, and BiO2-x, resulting in a very efficient separation of photogenerated charge carriers in the composite. This work adds to the growing potential of mixed valent bismuth oxides based photocatalysts and is expected to accelerate the pace of the development of new-generation photocatalysts with high efficiency utilizing full-spectrum solar light.

15.
ACS Appl Mater Interfaces ; 11(41): 37822-37832, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31550118

ABSTRACT

Sphere-like Bi5O7I (BOI) doped with La (L-BOI) samples were prepared by a solvothermal method followed by calcination at 450 °C for 2 h. Au nanoparticles were loaded on 6% La-doped Bi5O7I (2%A-6%L-BOI) microspheres by a room-temperature chemical reduction method. The UV-vis absorption spectra show that the L-BOI and 2%A-6%L-BOI samples have a strong visible-light absorption in comparison with the pure BOI. The electron paramagnetic resonance results indicate that the number of oxygen vacancies in L-BOI samples is increased with an increasing amount of the La dopant. The band structure of the prepared photocatalysts is investigated by confirming the positions of the valence band (VB) measured by XPS-VB and the Fermi level computed by density functional theory, respectively. NO is selected as a target gaseous pollutant to confirm the influence of La doping and the plasmonic effect of Au nanoparticles on the photocatalytic activity of BOI microspheres. The 2%A-6%L-BOI sample exhibits an enhanced photocatalytic performance compared to BOI, L-BOI, and A-BOI photocatalysts under visible-light irradiation. Interestingly, the 2%A-6%L-BOI sample also can reduce the amount of intermediate NO2 during the NO removal process. The enhanced photocatalytic efficiency of the 2%A-6%L-BOI photocatalyst is profited from the synergy of La-ion doping, oxygen vacancy, and the surface plasmon resonance effect of Au nanoparticles. Based on the results of trapping experiments and electron spin resonance spectroscopy tests, h+, e-, and •O2- were involved in the NO oxidative removal.

16.
Langmuir ; 35(35): 11265-11274, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31403299

ABSTRACT

Doping and novel metallic nanoparticles loading on the photocatalyst are two effective means to enhance its photocatalytic activity. In our study, Pd0/Pd2+-co-modified ZnWO4 nanorods were fabricated by a two-step hydrothermal process and room-temperature reduction method. The performance of the as-prepared samples was evaluated through the photocatalytic nitric oxide (NOx) removal under simulated solar and visible-light irradiation. Pd0/Pd2+-co-modified ZnWO4 nanorods present a significantly enhanced photocatalytic activity for NOx removal compared with Pd0-loaded or Pd2+-doped ZnWO4 under simulated sunlight irradiation owing to a narrower band gap of Pd2+ doping compared with that of pure ZnWO4. The role of Pd0 nanoparticles is to act as an electron reservoir to restrain the recombination of e-/h+ pairs. According to the trapping measurements, the photoinduced holes and electrons play critical roles during the photocatalytic process. In addition, electron spin resonance (ESR) results further confirm that •O2- and •OH radicals are present and assist in the photocatalysis under simulated solar light irradiation. Stability test demonstrated that 1.5% Pd0/0.5% Pd2+-co-modified ZnWO4 nanorods as photocatalyst have high photocatalytic stability in NOx removal. This work proved that Pd0/Pd2+-co-modified ZnWO4 nanorods can be considered as an efficient photocatalyst for NOx removal.

17.
Cancer Manag Res ; 10: 5591-5603, 2018.
Article in English | MEDLINE | ID: mdl-30519106

ABSTRACT

BACKGROUND: SIRT4 is a member of the sirtuin family of nicotinamide adenine dinucleotide-dependent enzymes located in the mitochondria, and is involved in regulating energy metabolism, stress response, and cellular lifespan in mammalian cells. However, its function in human neuroblastoma (NB) remains unexplored. METHODS: Expression of SIRT4 in 158 pairs of human NB tumor tissues and adjacent normal tissues collected from March 2009 to October 2012 was analyzed by immunohistochemistry, Western blotting, and real-time fluorescence quantitative PCR. For in vitro study, SIRT4 was overexpressed in SH-SY5Y, SK-N-BE, and IMR-32 cells to study the effects of SIRT4 expression on proliferation, invasion, and migration of human NB cells and on mitochondrial function. RESULTS: SIRT4 gene expression in human NB tumor tissues was significantly lower than that in adjacent normal tissues (P<0.001). SIRT4 expression was lower in NB patients with higher International Neuroblastoma Staging System stage (P=0.018), with lymph node metastasis, than patients without lymph node metastasis (P<0.001). Survival times of NB patients with low expression of SIRT4 were significantly shorter than those of patients with high expression of SIRT4 (P=0.0036). Overexpression of SIRT4 significantly reduced the proliferation, invasion, and migration ability of NB cells as well as mitochondrial energy production, and caused SIRT1 upregulation and mitochondrial damage in NB cells. CONCLUSION: SIRT4 exhibits a tumor suppressor function in human NB and inhibits mitochondrial metabolism and SIRT1 expression in tumor cells, thereby reducing the energy metabolism of tumor cells. These results suggest that SIRT4 may be a new therapeutic target for human NB.

18.
Nat Commun ; 9(1): 3113, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082699

ABSTRACT

The synthetic challenges of radialenes have precluded their practical applications. Here, we report a one-step synthetic protocol of [4]radialene on a copper surface. High-resolution scanning tunneling microscopy measurements reveal that such catalytic reaction proceeds readily with high selectivity at the temperature below 120 K. First-principles calculations show that the reaction pathway is characterized by firstly the cooperative inter-molecular hydrogen tautomerization and then the C-C bond formation. The feasibility of such cyclotetramerization reaction can be interpreted by the surface effect of Cu(100), which firstly plays an important role in directing the molecular assembly and then serves as an active catalyst in the hydrogen tautomerization and C-C coupling processes. This work presents not only a novel strategy to the scant number of synthetic methods to produce [4]radialenes via a novel [1 + 1 + 1 + 1] reaction pathway, but also a successful example of C-C bond coupling reactions guided by the surface-induced C-H/π assembly.

19.
Phys Chem Chem Phys ; 20(29): 19486-19491, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29998269

ABSTRACT

We report the discovery of bridge-bonded methylthiolate, SCH3, along the step edges of the Au(111) surface. Real-space imaging with a scanning tunnelling microscope reveals the presence of bridge-bonded SCH3 along both the [11[combining macron]0] and the [112[combining macron]] oriented step edges. The nearest neighbour distances of SCH3 along these steps are 2a and , respectively. The Au(111) terrace is covered with the usual CH3SAuSCH3 staples. The bridge-bonded alkanethiolate is expected to play a rather significant role in the formation of thiol-passivated Au nanoclusters because of the high fraction of atoms in similar low-coordination sites.

20.
Langmuir ; 34(28): 8388-8392, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29924615

ABSTRACT

We report controlled manipulation of magic number gold-fullerene clusters, (C60) m-(Au) n, on a Au(111) substrate at 110 K using scanning tunneling microscopy (STM). Each cluster consists of a two-dimensional gold island of nAu atoms confined by a frame of mC60 molecules. Using STM, C60 molecules are extracted from the molecular frame one at a time. The extraction is conducted by driving the STM tip into the cluster, leading to one of the molecules being squeezed out of the frame. Unlike at room temperature, the extracted molecules do not move away from the cluster because of the lack of thermal energy at 110 K; they are found to be attached to the outside of the frame. Reversible manipulation is also possible by pushing an extracted molecule back into the frame. This reversible manipulation is possible only for molecules from the edge of the cluster.

SELECTION OF CITATIONS
SEARCH DETAIL
...