Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 689, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030471

ABSTRACT

BACKGROUND: Boron (B) is an essential micronutrient for plants. Inappropriate B supply detrimentally affects the productivity of numerous crops. Understanding of the molecular responses of plants to different B supply levels would be of significance in crop improvement and cultivation practices to deal with the problem. RESULTS: We conducted a comprehensive analysis of the transcriptome and proteome of tobacco seedlings to investigate the expression changes of genes/proteins in response to different B supply levels, with a particular focus on B deficiency. The global gene and protein expression profiles revealed the potential mechanisms involved in the responses of tobacco to B deficiency, including up-regulation of the NIP5;1-BORs module, complex regulation of genes/proteins related to cell wall metabolism, and up-regulation of the antioxidant machinery. CONCLUSION: Our results demonstrated that B deficiency caused severe morphological and physiological disorders in tobacco seedlings, and revealed dynamic expression changes of tobacco genes/proteins in response to different B supply levels, especially to B deficiency, thus offering valuable insights into the molecular responses of tobacco to B deficiency.


Subject(s)
Boron , Nicotiana , Proteome , Transcriptome , Boron/deficiency , Boron/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Proteome/metabolism , Gene Expression Regulation, Plant , Seedlings/genetics , Seedlings/metabolism , Seedlings/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling
2.
Plant Physiol Biochem ; 202: 107919, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37557018

ABSTRACT

Zinc (Zn) is an essential micronutrient for plants. Adequate regulation of Zn uptake, transport and distribution, and adaptation to Zn-deficiency stress or Zn-excess toxicity are crucial for plant growth and development. However, little has been done to understand the molecular responses of plants toward different Zn supply levels. In the present study, we investigated the growth and physiological responses of tobacco seedlings grown under Zn-completely deficient, Zn-limiting, Zn-normal, and Zn-4-fold sufficient conditions, respectively, and demonstrated that Zn deficiency/limitation caused oxidative stress and impaired growth of tobacco plants. Combined transcriptome and proteome analysis revealed up-regulation of genes/proteins associated with Zn uptake and distribution, including ZIPs, NAS3s, and HMA1s, and up-regulation of genes/proteins involved in regulation of oxidative stress, including SODs, APX1s, GPX6, and GSTs in tobacco seedlings in response to Zn deficiency/limitation, suggesting that tobacco possessed mechanisms to regulate Zn homeostasis primarily through up-regulation of the ZIPs-NAS3s module, and to alleviate Zn deficiency/limitation-induced oxidative stress through activation of the antioxidant machinery. Our results provide novel insights into the adaptive mechanisms of tobacco in response to different Zn supplies, and would lay a theoretical foundation for development of varieties of tobacco or its relatives with high tolerance to Zn-deficiency.


Subject(s)
Antioxidants , Zinc , Zinc/metabolism , Transcriptome , Nicotiana/genetics , Nicotiana/metabolism , Proteome , Seedlings/genetics , Seedlings/metabolism , Homeostasis , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL