Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Environ Sci Pollut Res Int ; 30(59): 124407-124415, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37966645

ABSTRACT

Organotin compounds (OTs) accumulate in fish easily, however, research on their influencing factors is still limited. This study collected 25 species of fish with different diets, habitats, and age from the Three Gorges Reservoir (TGR), the largest deep-water river channel-type reservoir in China, and analyzed the accumulation characteristics of OTs in these fish. The results showed that tributyltin (TBT) and triphenyltin (TPhT) were the dominant OTs in fish from the TGR. The correlation between OTs concentration and age, body length, and body weight varied with fish species. The concentrations of TBT and TPhT in carnivorous fish (mean, 25.78 and 11.69 ng Sn/g dw, respectively) were higher than those in other diet fish (P<0.01), but there was no significant difference in fish at different habitat water layers (P>0.05). In addition, the degradation rates of TBT and TPhT in different fish species were all below 50%. In summary, the accumulation of TBT and TPhT in fish is mainly influenced by diet, and both TBT and TPhT were difficult to degrade in fish. These results reveal the pollution characteristics of OTs in fish from the TGR, and can improve our understanding of the factors influencing TBT and TPhT accumulation in freshwater fish.


Subject(s)
Organotin Compounds , Trialkyltin Compounds , Water Pollutants, Chemical , Animals , Trialkyltin Compounds/metabolism , Fishes/metabolism , China , Environmental Monitoring , Water , Water Pollutants, Chemical/analysis
2.
J Hazard Mater ; 445: 130570, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37055976

ABSTRACT

This study investigated the behavior of veterinary antibiotics (VAs) in a small farm ecosystem. Manure and environmental samples were collected around a large pig farm in northeast China. Thirty-four VAs in six categories were analyzed. Then, a multimedia fugacity model was used to estimate the fates of VAs in the environment. The results showed that VAs were prevalent in manure, soil, water, and sediment, but not in crops. Compared with fresh manure, VA levels were significantly lower in surface manure piles left in the open air for 3-6 months. The main VAs, tetracyclines and quinolones, decreased by 427.12 and 158.45 µg/kg, respectively. VAs from manure piles were transported to the surroundings and migrated vertically into deep soil. The concentrations of ∑VAs detected in agricultural soils were 0.03-4.60 µg/kg; > 94% of the mass inventory of the VAs was retained in soil organic matter (SOM), suggesting that SOM is the main reservoir for antibiotics in soil. Risk assessment and model analysis indicated that the negative impact of mixed antibiotics at low concentrations in farmland on crops may be mediated by indirect effects, rather than direct effects. Our findings highlight the environmental fates and risks of antibiotics from livestock farms.


Subject(s)
Anti-Bacterial Agents , Environmental Monitoring , Soil Pollutants , Veterinary Drugs , Animals , Anti-Bacterial Agents/analysis , China , Crops, Agricultural , Ecosystem , Environmental Monitoring/methods , Farms , Manure/analysis , Soil , Soil Pollutants/analysis , Swine , Veterinary Drugs/analysis
3.
Sci Total Environ ; 845: 157276, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35835194

ABSTRACT

Triphenyltin (TPhT) and tributyltin (TBT) remain widely present in various aquatic environments despite restrictions on their use in many countries for many years. The biomagnification of these compounds in the aquatic food web remains controversial. This study reports the bioaccumulation of TPhT and TBT in aquatic animals in the Three Gorges Reservoir (TGR), a deep-water river channel-type reservoir and the largest reservoir in China. We measured TPhT, TBT and their metabolites in 2 invertebrates, 27 fish and the aquatic environment. The logarithmic bioaccumulation factors of TPhT and TBT were 4.37 and 3.77, respectively, indicating that TPhT and TBT were enriched in organisms of the TGR. Both TPhT and TBT concentrations were significantly and positively correlated with trophic level, with trophic magnification factors of 3.71 and 3.63, respectively, indicating that TPhT and TBT exhibited similar trophic enrichment in the freshwater food web of the TGR. The results of health risk assessment showed that although all hazard index (HI) values were <1, more attention should be paid to the health risk to children associated with consumption of aquatic products (HI = 0.67). This study provides powerful evidence of trophic enrichment of TPhT and TBT in a freshwater food web in a deep-water river channel-type reservoir and provides valuable data regarding organotins in aquatic animals in the TGR.


Subject(s)
Organotin Compounds , Water Pollutants, Chemical , Animals , China , Environmental Monitoring/methods , Food Chain , Rivers , Water , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 834: 155361, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35460793

ABSTRACT

Organophosphate esters (OPEs) in the environment have been the focus of increasing attention due to their ubiquity and potential toxicity. However, there is little information on the occurrence and characteristics of OPEs in rural areas, especially those with cold year-round temperatures and frozen soil in winter. In this study, environmental samples were collected, in summer and winter, from villages and towns in Northeast China differing in the types and intensities of their anthropogenic activities. The samples were analyzed for 12 OPEs. The results showed the widespread presence of alkyl-OPEs, Cl-OPEs, and aryl-OPEs in the water, soil, snow, and ice of the study sites. In summer, tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) were the primary compounds in water and soil, respectively. The ∑12OPE concentration in three villages varied from 46.26 to 257.37 ng/L in water, and from 6.62 to 19.46 ng/g in soils. The ∑12OPE concentrations in water were lower in winter than summer, but conversely, ∑12OPE concentrations in frozen soils in winter were higher than those in soils in summer. In winter, there was a shift in the predominant OPEs in water and frozen soils, with dominance of TCEP and complex compounds, respectively. Obvious seasonal characteristics of the potential sources and ecological risks of OPEs in these areas were also determined, with more complex sources of OPEs seen in summer than winter. In summer, only 2-ethylhexyl diphenyl phosphate (EHDPP) in water posed a potential risk, while in summer and, especially, in winter, EHDPP and tris(2-ethylhexyl) phosphate posed potential risks in soils. The high ∑12OPE concentration in snow (56.77 ng/L) implied that wet deposition can amplify OPEs in other environmental compartments. This is the first systematic report on OPEs in a cold rural area. Our findings highlight the need for seasonal monitoring of OPEs in similar areas.


Subject(s)
Flame Retardants , China , Environmental Monitoring/methods , Esters , Flame Retardants/analysis , Organophosphates , Phosphates , Seasons , Soil , Water
5.
Sci Total Environ ; 806(Pt 3): 151348, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34728211

ABSTRACT

Organophosphate esters (OPEs) are widely used flame retardants that are frequently released into the environment, causing potential harm to humans and ecosystems. Tibet is located on the Tibetan Plateau, known as the "roof of the world", but the occurrence of OPEs in Tibet remains unclear. This is the first report of the occurrence, potential sources and risks of 12 OPEs in water, soil, sediment and snow from Xainza, a typical town at high-elevation in Tibet (average elevation = 4700 m). Ten OPEs were observed, with ∑OPE concentrations of 46.45-1744.73 ng/L in surface water, 29.74-73.85 ng/g in soil, and 13.30-32.23 ng/g in sediment. Moreover, the mean ∑OPE concentration in snow was 413.90 ng/L. Tris (2-chloroethyl) phosphate (TCEP) and tris (2-chloroisopropyl) phosphate (TCPP) were the main OPEs in surface water and snow, while 2-ethylhexyl diphenyl phosphate (EHDPP) was dominant in soil and sediment. Local human activities and long-distance atmospheric transport may be the main sources of OPEs in Xainza. The assessment of ecological risk indicated that EHDPP in soil poses potential risk. The occurrence of OPEs in Xainza showed that more attention should be paid to persistent organic pollutants in high-elevation regions.


Subject(s)
Environmental Monitoring , Flame Retardants , China , Ecosystem , Esters , Flame Retardants/analysis , Humans , Organophosphates , Tibet
6.
Huan Jing Ke Xue ; 41(2): 763-772, 2020 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-32608736

ABSTRACT

Acicular mullite was modified by ferromanganese binary metal oxide (Mn-Fe) to improve the removal efficiency of endocrine disruptors by traditional water treatment practices, using the commercial ceramsite for comparison. The physicochemical properties of synthesized samples were characterized, and batch adsorption experiments were carried out to study the adsorption efficiency of bisphenol A (BPA) and 17α-ethinylestradiol (EE2) on synthesized samples, investigating how solution chemistry and regeneration may affect the adsorption efficiency. Results show that the manganese oxide loaded on the acicular mullite was manganite with an average particle size of 450 nm. After Mn-Fe impregnation, the specific surface area, cumulative pore volume, and mesoporous ratio of the acicular mullite were significantly increased. The virgin acicular mullite had no removal ability for BPA and EE2, and the removal efficiency of BPA and EE2 by Mn-Fe impregnated acicular mullite were significantly increased. Acicular mullite was more suitable as support material for modified filter material. The adsorption kinetics of BPA and EE2 on Mn-Fe-M were fitted with the intra-particle diffusion model, and found to be mainly affected by intra-particle diffusion. The isothermal adsorption data was best fitted to the Langmuir-Freundlich model, and the maximum adsorption capacities of BPA and EE2 were 5.043 mg·g-1 and 3.990 mg·g-1, respectively. Thermodynamic experiments showed that the adsorption of BPA and EE2 by Mn-Fe embedded in acicular mullite was an endothermic reaction, and the temperature increase is beneficial to the adsorption. The adsorption amount of BPA and EE2 on Mn-Fe embedded in acicular mullite decreased with increasing pH. The increase of ionic strength favored the adsorption removal of BPA and EE2. The co-existing anion of SO42- promoted the adsorption of both BPA and EE2, while CO32- and PO43- inhibited the adsorption of both BPA and EE2 on Mn-Fe embedded in acicular mullite. The adsorbent regeneration test showed that Mn-Fe embedded acicular mullite was an easily recyclable adsorbent. Mn-Fe embedded in high-porosity acicular mullite can effectively remove typical endocrine disruptors in water, and it can be potentially extensively used to alleviate the problem of low removal efficiency of endocrine disrupting chemicals in traditional water treatment practice.

7.
Sci Total Environ ; 738: 139912, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32531607

ABSTRACT

Ultraviolet (UV) irradiation is an abiotic pathway for the transformation of complex phosphorus (P) components into inorganic P in ecosystems. To explore the effect of UV irradiation on organic P (OP) bioavailability in the water level fluctuation zone (WLFZ) soil, we collected representative soil samples from WLFZ of the Pengxi River, a tributary of the TGR, China. We determined the contents of different forms of OP in the WLFZ soil through sequential extraction. The bioavailability of different forms of OP and the effect of UV light were characterised using a combination of enzymatic hydrolysis and UV irradiation. The OP contents of the different extracts (Po) were ranked as NaOH-Po > NaHCO3-Po > H2O-Po, whereas those of enzymatically hydrolysable organic P (EHP) were ranked as NaOH-EHP > NaHCO3-EHP > H2O-EHP. UV irradiation was found to improve OP bioavailability, as demonstrated by increased levels of UV-sensitive P (UV-P) and EHP in the extracts after irradiation. The total contents of bioavailable Po in extracts were 5.6-35.3% higher after UV irradiation than before irradiation. Thus, the effect of UV irradiation on the OP bioavailability and release activity cannot be neglected in TGR WLFZ soil.


Subject(s)
Phosphorus/analysis , Soil , Biological Availability , China , Ecosystem , Ultraviolet Rays , Water
8.
Chemosphere ; 217: 232-242, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30419377

ABSTRACT

The Three Gorges Reservoir Region (TGRR) is one of the most sensitive areas of ecological environment in China. As vital backwater areas, the secondary anabranches of the TGRR were prone to eutrophication in Spring which would affect the distribution and transfer of organotins (OTs) among aquatic media. This study quantified the concentrations of butyltins (BTs) and phenyltins (PhTs) in water columns and aquatic media of two anabranches of the TGRR, the Daning River (DR) and the Xiaojiang River (XR) during the state of eutrophication. Our results showed that the average concentrations of BTs and PhTs in surface water are 43.91, 81.25 ng Sn L-1 in the DR, and 63.49, 69.21 ng Sn L-1 in the XR, respectively, and there were no obvious differences in the concentrations of BTs and PhTs across the water columns in the DR and XR. PhTs, especially monophenyltin (MPhT), are predominated in the dissolved phase, whereas BTs, especially dibutyltin (DBT), are predominated in both suspended particulate matter (SPM) and the sediment. Shipping and agricultural activity were likely the sources of OTs in both the DR and XR. High concentrations of tributyltin (TBT) and triphenyltin (TPhT) are still present in the aquatic media of the TGRR, and pose a significant risk to aquatic organisms due to the potential for bioaccumulation. Therefore, it is necessary to further monitor and assess OTs especially PhTs in surface water, and to continue to restrict the use of OTs to protect the aquatic environment of the TGRR.


Subject(s)
Environmental Monitoring/methods , Fresh Water/chemistry , Organotin Compounds/analysis , Water Pollutants, Chemical/analysis , Aquatic Organisms , China , Trialkyltin Compounds/analysis
9.
Environ Sci Pollut Res Int ; 25(15): 15019-15028, 2018 May.
Article in English | MEDLINE | ID: mdl-29552717

ABSTRACT

The occurrence and health risks of organotins (OTs) in the waterworks and source water in the Three Gorges Reservoir Region (TGRR), China were assessed in this study. Water samples were collected at four waterworks (A, B, C, and D) in March and July 2012 to analyze butyltins (BTs) and phenyltins (PTs) using a gas chromatography-mass spectrometry (GC-MS) system. Our results showed that both the waterworks and their nearby water sources were polluted by OTs, with PTs being the most dominant species. Monobutyltin (MBT), monophenyltin (MPT), diphenyltin (DPT), and triphenyltin (TPT) were detected in most of the analyzed water samples. The highest concentrations of OTs in influents, effluents, and source water in March were 52.81, 17.93, and 55.32 ng Sn L-1, respectively. Furthermore, significant seasonal changes in OTs pollution were observed in all samples, showing pollution worse in spring compared with summer. The removal of OTs by the conventional treatment processes was not stable among the waterworks. The removal efficiency of OTs in July reached 100% at plant B, while that at plant C was only 38.8%. The source water and influents shared similar composition profiles, concentrations, and seasonal change of OTs, which indicated that OTs in the waterworks were derived from the source water. A health risk assessment indicated that the presence of OTs in the waterworks would not pose a significant health risk to the population, yet their presence should not be ignored.


Subject(s)
Organotin Compounds/toxicity , Rivers , Water Pollutants, Chemical/toxicity , China , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry/methods , Organotin Compounds/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Water Supply
10.
Environ Sci Pollut Res Int ; 25(2): 1731-1741, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29101698

ABSTRACT

Organotins (OTs) pollution in the aquatic environment of the Three Gorges Reservoir (TGR) was assessed during the reservoir's operating cycle. Butyltins (BTs) and phenyltins (PhTs) in the water phase and suspended particulate matter (SPM) at different water levels were analysed. It was found that the distribution of OTs in the surface and bottom water phases were similar, with the dominant OTs being BTs at the low water level and PhTs at the high water level. The detection rates and concentrations of OTs in the water phase at the high water level were both higher than those at the low water level, with most OTs being monobutyltin (MBT) at the low water level and monophenyltin (MPhT) at the high water level. The concentrations of OTs in SPM at the low water level were higher than those at the high water level, and BTs, especially dibutyltin (DBT) and tributyltin (TBT), were the predominant OTs whether surface or bottom layer at each water level. The BTs and SPM concentrations had a significant positive relationship in all samples, indicating that the SPM concentration would determine the distribution of BTs in the aquatic environment of the TGR region (TGRR). The difference in the distribution of OTs at the different water levels indicated that the hydrological and hydraulic behaviour of the TGR influences OTs transport in the aquatic environment of the TGRR.


Subject(s)
Environmental Monitoring , Organotin Compounds/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , China , Particulate Matter/analysis , Water Movements , Water Pollution, Chemical/statistics & numerical data
11.
Chemosphere ; 171: 405-414, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28033571

ABSTRACT

The water quality security of the Three Gorges Reservoir during different operating periods has been a subject of recent concern. This study is the first to report the spatiotemporal variability of organotins (OTs) in surface water under dynamic water level conditions in the Three Gorges Reservoir Region (TGRR). TGRR surface water was collected during three monitoring campaigns to analyze butyltins (BTs) and phenyltins (PTs) using a gas chromatography-mass spectrometry system. Our results showed that TGRR surface water was polluted by BTs and PTs, with mono-OTs being the dominant species. A wide range of BTs and PTs concentrations was observed across the study area, but tributyltin (TBT) displayed extensive spatial distribution, and the highest concentrations consistently occurred in the downstream region of the TGRR study area, with a maximum of 393.35 ng Sn/L in Zigui (S27). The total OTs contamination level decreased over time. The diphenyltin concentration exhibited significant seasonal variation, while other OTs showed seasonal changes only during two monitoring campaigns, with the exception of dibutyltin. An ecological risk assessment indicated that both TBT and triphenyltin posed risks to aquatic organisms in TGRR surface water. We urgently recommend continuous monitoring and further measures to prevent and control OTs pollution in the TGRR.


Subject(s)
Environmental Monitoring , Organotin Compounds/analysis , Organotin Compounds/toxicity , Rivers/chemistry , Spatio-Temporal Analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Aquatic Organisms/drug effects , China , Gas Chromatography-Mass Spectrometry , Organotin Compounds/chemistry , Risk Assessment , Water Pollutants, Chemical/chemistry
12.
Chemosphere ; 161: 96-103, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27423126

ABSTRACT

Triphenyltin (TPhT) is a kind of organotin compounds which have been used ubiquitously as herbicide, pesticide, and fungicide in agriculture. The present study provides the possibility to detect and monitor TPhT with normal Raman spectroscopy and surface enhanced Raman scattering (SERS) spectroscopy. Firstly, the complete vibrational Raman spectra characterization of TPhT along with the IR spectroscopy were reported for the first time. Then a wide range of pH values were carried out to choose the optimal pH value in TPhT detection by using Raman spectroscopy. Afterwards, Raman spectra of various TPhT solutions were collected and analyzed. The results indicate that the optimal pH value for TPhT detection by Raman spectroscopy is 5.5, and with silver nanoparticles (Ag NPs) as SERS substrate is an effective technique for trace TPhT detection with an enhancement by 5 orders of magnitude and the detection limit can be as low as 0.6 ng/L within less than 30 s. Finally, in this study, the residual of TPhT on apple peel was investigated by casting different concentrations of TPhT on apple peel under the current optimized condition. The result demonstrates that TPhT could be detected based on its SESR spectra at 6.25 ng/cm(2) in standard solutions.


Subject(s)
Environmental Monitoring/methods , Organotin Compounds/analysis , Spectrum Analysis, Raman , Limit of Detection , Metal Nanoparticles/chemistry , Silver/chemistry , Solutions
13.
Sci Rep ; 6: 26721, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27220287

ABSTRACT

As important constituents of activated sludge flocs, extracellular polymeric substances (EPS) play significant roles in pollutants adsorption, the formation and maintenance of microbial aggregates, and the protection of microbes from external environmental stresses. In this work, EPS in activated sludge from a municipal wastewater treatment plant (M-WWTP) with anaerobic/anoxic/oxic (A(2)/O) process and a hyperhaline wastewater treatment plant (H-WWTP) with anaerobic/oxic (A/O) process were extracted by ultrasound method. The proteins and polysaccharides contents in EPS were determined by using a modified Lowry method and anthrone colorimetry respectively to analyze the detail differences in two types of WWTPs. Fourier transform-infrared spectroscopy and three-dimensional excitation-emission matrix fluorescence spectroscopy demonstrated proteins and polysaccharides were the dominant components of the two types of EPS, and the aromatic protein-like substances accounted for a larger proportion in EPS proteins. The results of the aggregation test indicated that EPS were good for the sludge aggregation, and the EPS in oxic sludge were more beneficial to sludge aggregation than that in anoxic sludge. Anoxic sludge EPS in H-WWTP showed a negligible effect on sludge aggregation. Comparative study on EPS of different tanks in the M-WWTP and H-WWTP was valuable for understanding the characteristics of EPS isolated from two typical wastewater treatment processes.


Subject(s)
Microbiota , Wastewater/microbiology , Water Microbiology , Water Purification/methods
14.
Environ Sci Pollut Res Int ; 23(11): 10415-10425, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27055891

ABSTRACT

We investigated the occurrence of cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), Znic (Zn), iron (Fe), manganese (Mn), and magnesium (Mg) in sediments, as well as in related soils and aquatic plants in the Liangtan River, a typical secondary anabranch of the Yangtze River in the Three Gorges Reservoir Region (TGRR) of China. We found that sediments accumulated more metals than soils and aquatic plants. Concentrations of the nine metals in sediments and soils followed the same sequence, while their concentrations in aquatic plants followed a different sequence. Potential adverse effects of contaminated sediments on benthic fauna were evaluated, and the results showed that the toxic effect on benthic organisms followed the sequence Zn > Ni > Cr > Cu > Cd > Pb. The potential ecological risk index analysis indicated that Cd in sediments had considerable ecological risk, whereas Cr, Cu, Zn, Ni, and Pb had low ecological risk. The potential ecological risk index (RI) of the heavy metals in sediments of the Liangtan River was 174.9, indicating moderate ecological risk. The transfer factor trend of metals for aquatic plants showed that Cd and Ni had the most and least accumulation, respectively. For Cu, Cd, Mg, Pb, and Cr, a significant positive correlation of the metal concentrations was observed between sediments and soils, but no correlations (excluding Cr) were detected between sediments and aquatic plants. Our study indicated that anthropogenic input may be the primary source of metal contamination in the Liangtan River, and that Zn and Cd pollution in the Liangtan River should be further explored.


Subject(s)
Eichhornia/chemistry , Metals, Heavy/analysis , Oenanthe/chemistry , Water Pollutants, Chemical/analysis , China , Chromium/analysis , Ecology , Environmental Monitoring , Geologic Sediments/chemistry , Metals, Heavy/toxicity , Risk Assessment , Rivers , Soil/chemistry , Water Pollutants, Chemical/toxicity
15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(8): 2499-2504, 2016 Aug.
Article in Chinese | MEDLINE | ID: mdl-30074353

ABSTRACT

Triphenyltin Chloride (TPhT) is one of the only two kinds of metal compounds known in the endocrine disruptors. TPhT is widely used in industry, agriculture and transportation fields, which can cause great impact on soil, marine and inland freshwater environment. This experiment collects the Raman signal of TPhT standard powders by applying laser confocal Raman spectroscopy to explore the feasibility of the method and to acquire optimized parameters. In this paper, we combined the application of laser confocal Raman spectroscopy with TPhT physical property. Due to different functional groups of TPhT molecules shows different vibration modes, the Raman spectra was divided into three wavenumber areas(1 500~3 200, 900~1 500 and 100~900 cm-1) to attribute and analyze their assignments of the Raman peaks, obtaining the characteristics of TPhT vibration modes and the corresponding characteristic peaks. Finally, a standard Raman spectra library was established with the spectral range between 100~3 200 cm-1. The results showed that the Raman spectra with high signal-to-noise ratio can be obtained in a short time when the laser power options decayed to 0.5% of the original power (500 mW) after 10s exposure and 2 times integration. Strong Raman signals observed in the Raman spectroscopy at 212, 332, 657, 997 and 1 577 cm-1 could be used as the characteristic peaks of TPhT in Raman detection. Otherwise, the co-occurrence of the Raman peaks at 657 and 997 cm-1 can be considered as the presence of TPhT in complex environmental samples. Experimental results are given to identify the presence of TPhT. The results would be used to identify the presence of TPhT residual in real environmental samples, which provide a theoretical basis and data base on Raman spectroscopy.


Subject(s)
Endocrine Disruptors/analysis , Spectrum Analysis, Raman , Agriculture , Lasers , Organotin Compounds , Soil
17.
Environ Sci Pollut Res Int ; 22(11): 8375-85, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25537288

ABSTRACT

The Three Gorges Project is the largest hydro project in the world, and the water level of the Three Gorges Reservoir (TGR) is dynamic and adjustable with the aim of flood control and electrical power generation. It is necessary to investigate the pollutants and their underlying contamination processes under dynamic water levels to determine their environmental behaviors in the Three Gorges Reservoir Area (TGRA). Here, we report the assessment of organotin compounds (OTs) pollution in the river sediments of the TGRA. Surface sediment samples were collected in the TGRA at low and high water levels. Tributyltin (TBT), triphenyltin (TPhT), and their degradation products in sediments were quantified by gas chromatography-mass spectrometry. Butyltins (BTs) and phenyltins (PhTs) were detected in sediments, and BTs predominated over PhTs in the whole study area under dynamic water level conditions. The concentrations of OTs in sediments varied markedly among locations, and significant concentrations were found in river areas with high levels of boat traffic and wastewater discharge. Sediments at all stations except Cuntan were lightly contaminated with TBT, and total organic carbon (TOC) was a significant factor affecting the fate of TBT in the TGRA. The butyltin and phenyltin degradation indices showed no recent inputs of TBT or TPhT into this region, with the exception of fresh TPhT input at Xiakou Town. Shipping activity, wastewater discharge, and agriculture are the most likely sources of OTs in the TGRA.


Subject(s)
Geologic Sediments/analysis , Organotin Compounds/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Rivers , Ships
18.
Huan Jing Ke Xue ; 34(4): 1369-73, 2013 Apr.
Article in Chinese | MEDLINE | ID: mdl-23798116

ABSTRACT

The present study evaluated the potential ecological risk of organotin compounds (OTs) to wild veined rapa whelk (Rapana Venosa) population in Bohai Bay. The results showed that the imposex rate was 12.5% and 6.48% in Dashentang and Nanpaihe coastal areas, with relative penis size index of 9.61 and 12.45, respectively. The concentrations of butyltin compounds and phenyltin compounds were 39.04 ng x g(-1) dw and 46.48 ng x g(-1) dw in muscle tissues, and 32.09 ng x g(-1) dw and 109.03 ng x g(-1) dw in digest gland, respectively. Based on TBT levels in the muscles of all samples, a risk quotient of 0.024 was derived, indicating certain risk of OTs at current levels to wild veined rapa whelk populations in Bohai Bay.


Subject(s)
Ecosystem , Gastropoda/drug effects , Organotin Compounds/toxicity , Sex Determination Processes/drug effects , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/drug effects , Bays , China , Female , Male , Oceans and Seas , Reproduction/drug effects , Trialkyltin Compounds/toxicity
19.
Environ Monit Assess ; 185(5): 3831-7, 2013 May.
Article in English | MEDLINE | ID: mdl-22955725

ABSTRACT

The occurrence of organotins in the Yangtze River and the Jialing River in the urban section of Chongqing, China and their impact on drinking water waterworks are reported in this study. Water samples were extracted by solid-phase microextraction and measured using a gas chromatograph with mass spectrometer. The results showed that the rivers studied were polluted by both butyltins and phenyltins and that the butyltin species was the dominant pollutant. Butyltins, especially monobutyltin, were detected in all 18 sampling stations, and phenyltins were detected only in 11 sampling stations. Majority of the organotins were MBTs with concentrations varying from 27.3 to 1,145.8 ng Sn L(-1). Diphenyltin and dibutyltin were the second most common with the highest levels of 113.7 and 202.5 ng Sn L(-1), respectively. Monophenyltin, tributyltin, and triphenyltin had the lowest detection rates with concentration levels of 9.7, 161.8, and 37.2 ng Sn L(-1), respectively. Some of the organotins were also detected in drinking water waterworks, which posed a threat to the water quality of Chongqing.


Subject(s)
Environmental Monitoring , Organotin Compounds/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , China , Solid Phase Microextraction , Water Pollution, Chemical/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL