Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 510
Filter
1.
Biomed Opt Express ; 15(7): 4190-4205, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022536

ABSTRACT

Polarization-sensitive optical coherence tomography (PS-OCT) is a functional imaging tool for measuring tissue birefringence characteristics. It has been proposed as a potentially non-invasive technique for evaluating skin burns. However, the PS-OCT modality usually suffers from high system complexity and relatively low tissue-specific contrast, which makes assessing the extent of burns in skin tissue difficult. In this study, we employ an all-fiber-based PS-OCT system with single-state input, which is simple and efficient for skin burn assessment. Multiple parameters, such as phase retardation (PR), degree of polarization uniformity (DOPU), and optical axis orientation, are obtained to extract birefringent features, which are sensitive to subtle changes in structural arrangement and tissue composition. Experiments on ex vivo porcine skins burned at different temperatures were conducted for skin burn investigation. The burned depths estimated by PR and DOPU increase linearly with the burn temperature to a certain extent, which is helpful in classifying skin burn degrees. We also propose an algorithm of image fusion based on principal component analysis (PCA) to enhance tissue contrast for the multi-parameter data of PS-OCT imaging. The results show that the enhanced images generated by the PCA-based image fusion method have higher tissue contrast, compared to the en-face polarization images by traditional mean value projection. The proposed approaches in this study make it possible to assess skin burn severity and distinguish between burned and normal tissues.

2.
Org Lett ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39057194

ABSTRACT

Fluorinated rings have emerged as privileged structural modules in the fields of drug discovery and materials research. The incorporation of fluorine atoms into aromatic rings or heterocycles can lead to significant improvements in the physicochemical and biological properties of small molecules, making them valuable components in the design of new drugs and functional materials. Herein, we presented a cobalt-catalyzed C-H oxidation/gem-difluorination cascade reaction of readily available cyclic ethers with difluoroenoxysilanes, affording a series of gem-difluorinated analogues with moderate to high yields. The obtained products as versatile fluoroalkyl building blocks were showcased through divergent-oriented transformations.

3.
Plant Cell Environ ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973616

ABSTRACT

Plant resistance (R) genes play a crucial role in the detection of effector proteins secreted by pathogens, either directly or indirectly, as well as in the subsequent activation of downstream defence mechanisms. However, little is known about how R genes regulate the defence responses of conifers, particularly Pinus massoniana, against the destructive pine wood nematode (PWN; Bursaphelenchus xylophilus). Here, we isolated and characterised PmHs1pro-1, a nematode-resistance gene of P. massoniana, using bioinformatics, molecular biology, histochemistry and transgenesis. Tissue-specific expressional pattern and localisation of PmHs1pro-1 suggested that it was a crucial positive regulator in response to PWN attack in resistant P. massoniana. Meanwhile, overexpression of PmHs1pro-1 was found to activate reactive oxygen species (ROS) metabolism-related enzymes and the expressional level of their key genes, including superoxide dismutase, peroxidase and catalase. In addition, we showed that PmHs1pro-1 directly recognised the effector protein BxSCD1of PWN, and induced the ROS burst responding to PWN invasion in resistant P. massoniana. Our findings illustrated the molecular framework of R genes directly recognising the effector protein of pathology in pine, which offered a novel insight into the plant-pathogen arms race.

4.
ISA Trans ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38991893

ABSTRACT

The electro-pneumatic braking system with ON/OFF solenoid valves has been widely used in trains due to its advantages and superiority. The undesirable impact of the thermal effect on the electro-pneumatic braking system leads to frequent valve switching, degradation of the pressure tracking performance and sometimes instability. This article presents an adaptive model predictive control approach to solve the pressure control problem under temperature uncertainty based on a switched unscented Kalman filter. First, a nonlinear switched dynamical model with the uncertain temperature parameter is derived for the electro-pneumatic braking system by comprehensively integrating its nonlinear, discontinuous dynamics and thermal effect. Using a switched unscented Kalman filter on the presented model of the system, the temperature parameter is accurately estimated to improve the model's accuracy. Based on the corrected system model and the designed adaptive model predictive control method, the pressure tracking performance and the valves' switchings of the electro-pneumatic braking system are improved, and the stability is guaranteed. The simulations and the experiments conducted for a braking system prototype confirm the performance validity of the proposed method.

5.
Angew Chem Int Ed Engl ; : e202409948, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949953

ABSTRACT

As a remote and non-contact stimulus, light offers the potential for manipulating the polarization of ferroelectric materials without physical contact. However, in current research, the non-contact write-read (erase) process lacks direct observation through the stable current as output signal. To address this limitation, we investigated the photoinduced polarization switching capabilities of the cyanide-bridged compound [Fe2Co] using visible light, leading to the achievement of rewritable polarization. By subjecting [Fe2Co] crystals to alternating irradiation with 785 nm and 532 nm light, the polarization changes exhibited a distinct square wave pattern, confirming the reliability of the writing and erasing processes. Initialization involved exposing specific crystal units to 532 nm light for storing "1" or "0" information, while reading was accomplished by scanning the units with 785 nm light, resulting in brief current pulses for "1" states and no current signal for "0" states. This research unveils new possibilities for optical storage systems, paving the way for efficient and rewritable data storage and retrieval technologies, such as the next-generation memories.

6.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38836287

ABSTRACT

Somatic mutations have been identified in 10% to 63% of focal cortical dysplasia type II samples, primarily linked to the mTOR pathway. When the causative genetic mutations are not identified, this opens the possibility of discovering new pathogenic genes or pathways that could be contributing to the condition. In our previous study, we identified a novel candidate pathogenic somatic variant of IRS-1 c.1791dupG in the brain tissue of a child with focal cortical dysplasia type II. This study further explored the variant's role in causing type II focal cortical dysplasia through in vitro overexpression in 293T and SH-SY5Y cells and in vivo evaluation via in utero electroporation in fetal brains, assessing effects on neuronal migration, morphology, and network integrity. It was found that the mutant IRS-1 variant led to hyperactivity of p-ERK, increased cell volume, and was predominantly associated with the MAPK signaling pathway. In vivo, the IRS-1 c.1791dupG variant induced abnormal neuron migration, cytomegaly, and network hyperexcitability. Notably, the ERK inhibitor GDC-0994, rather than the mTOR inhibitor rapamycin, effectively rescued the neuronal defects. This study directly highlighted the ERK signaling pathway's role in the pathogenesis of focal cortical dysplasia II and provided a new therapeutic target for cases of focal cortical dysplasia II that are not treatable by rapamycin analogs.


Subject(s)
Insulin Receptor Substrate Proteins , MAP Kinase Signaling System , Mutation , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , MAP Kinase Signaling System/genetics , Animals , Malformations of Cortical Development, Group I/genetics , Malformations of Cortical Development, Group I/metabolism , Brain/metabolism , Brain/pathology , Neurons/metabolism , Neurons/pathology , Cell Movement/genetics , HEK293 Cells , Female , Focal Cortical Dysplasia , Epilepsy
7.
Genome Med ; 16(1): 81, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38872215

ABSTRACT

BACKGROUND: Early detection of colorectal neoplasms can reduce the colorectal cancer (CRC) burden by timely intervention for high-risk individuals. However, effective risk prediction models are lacking for personalized CRC early screening in East Asian (EAS) population. We aimed to develop, validate, and optimize a comprehensive risk prediction model across all stages of the dynamic adenoma-carcinoma sequence in EAS population. METHODS: To develop precision risk-stratification and intervention strategies, we developed three trans-ancestry PRSs targeting colorectal neoplasms: (1) using 148 previously identified CRC risk loci (PRS148); (2) SNPs selection from large-scale meta-analysis data by clumping and thresholding (PRS183); (3) PRS-CSx, a Bayesian approach for genome-wide risk prediction (PRSGenomewide). Then, the performance of each PRS was assessed and validated in two independent cross-sectional screening sets, including 4600 patients with advanced colorectal neoplasm, 4495 patients with non-advanced adenoma, and 21,199 normal individuals from the ZJCRC (Zhejiang colorectal cancer set; EAS) and PLCO (the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; European, EUR) studies. The optimal PRS was further incorporated with lifestyle factors to stratify individual risk and ultimately tested in the PLCO and UK Biobank prospective cohorts, totaling 350,013 participants. RESULTS: Three trans-ancestry PRSs achieved moderately improved predictive performance in EAS compared to EUR populations. Remarkably, the PRSs effectively facilitated a thorough risk assessment across all stages of the dynamic adenoma-carcinoma sequence. Among these models, PRS183 demonstrated the optimal discriminatory ability in both EAS and EUR validation datasets, particularly for individuals at risk of colorectal neoplasms. Using two large-scale and independent prospective cohorts, we further confirmed a significant dose-response effect of PRS183 on incident colorectal neoplasms. Incorporating PRS183 with lifestyle factors into a comprehensive strategy improves risk stratification and discriminatory accuracy compared to using PRS or lifestyle factors separately. This comprehensive risk-stratified model shows potential in addressing missed diagnoses in screening tests (best NPV = 0.93), while moderately reducing unnecessary screening (best PPV = 0.32). CONCLUSIONS: Our comprehensive risk-stratified model in population-based CRC screening trials represents a promising advancement in personalized risk assessment, facilitating tailored CRC screening in the EAS population. This approach enhances the transferability of PRSs across ancestries and thereby helps address health disparity.


Subject(s)
Colorectal Neoplasms , Early Detection of Cancer , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Female , Male , Middle Aged , Aged , Risk Assessment , Polymorphism, Single Nucleotide , Bayes Theorem , Risk Factors
8.
Mitochondrial DNA B Resour ; 9(6): 818-822, 2024.
Article in English | MEDLINE | ID: mdl-38919813

ABSTRACT

The first registered Paeonia Itoh hybrid cv. Hexie in China is a naturally occurring intersectional hybrid of Sect. Paeonia and Sect. Moutan. In this study, we sequenced, assembled, and analyzed the complete chloroplast genome of Paeonia Itoh hybrid cv. Hexie. The result showed that the chloroplast genome of Hexie, with a typical circular tetrad structure, is 152,958 bp in length, comprising a large single copy (LSC) region of 84,613 bp, a small single copy (SSC) region of 17,051 bp, and two reverse complementary sequences (IRs) of 25,647 bp. The chloroplast genome encoded 116 genes, including 80 protein-coding genes, 32 tRNA genes, and 4 rRNA genes. Phylogenetic analysis inferred from the shared protein-coding genes showed that the Paeonia Itoh hybrid cv. Hexie had the closest phylogenetic relationship with P. suffruticosa, followed by P. ostii, indicating that P. suffruticosa was its maternal parent. This study provides a molecular resource for phylogenetic and maternal parent studies of Paeonia Itoh hybrid, contributing to a basis for Paeonia Itoh hybrid breeding strategies in the future.

9.
J Inflamm Res ; 17: 3825-3838, 2024.
Article in English | MEDLINE | ID: mdl-38903877

ABSTRACT

Background: Intervertebral disc degeneration (IDD) underlies the pathogenesis of degenerative diseases of the spine; however, its exact molecular mechanism is unclear. Purpose: To explore the molecular mechanism of mechanical pressure (MP)-induced IDD and to assess the role and mechanism of Rosuvastatin (RSV) inhibits MP-induced IDD. Methods: SD rat nucleus pulposus cells (NPCs) were cultured in vitro and an apoptosis model of NPCs was constructed using MP. Proliferative activity, reactive oxygen species content, apoptosis, and wound healing were detected in each group of NPCs, respectively. The expression of relevant proteins was detected by qPCR and Western Blot techniques. 18 SD rats were randomly divided into control, pressure and RSV groups. Elisa, qPCR, Western Blot and immunohistochemical staining techniques were used to detect changes in the content of related proteins in the intervertebral discs of each group. HE staining and Modified Saffron-O and Fast Green Stain Kit were used to assess IDD in each group. Results: MP treatment at 1.0 MPa could significantly induce apoptosis of NPCs after 24 h. MP could significantly inhibit the proliferative activity and wound healing ability of NPCs, and increase the intracellular reactive oxygen species content and apoptosis rate; pretreatment with RSV could significantly activate the Nrf2/HO-1 signaling pathway and reverse the cellular damage caused by MP; when inhibit the Nrf2/HO-1 signaling pathway activation, the protective effect of RSV was reversed. In vivo MP could significantly increase the content of inflammatory factors within the IVD and promote the degradation of extracellular matrix, leading to IDD. When the intervention of RSV was employed, it could significantly activate the Nrf2/HO-1 signaling pathway and improve the above results. Conclusion: RSV may inhibit MP-induced NPCs damage and IDD by activating the Nrf2/HO-1 signaling pathway.

10.
Ecotoxicol Environ Saf ; 278: 116425, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723385

ABSTRACT

The biogenic synthesis of silver nanoparticles (AgNPs) by microorganisms has been a subject of increasing attention. Despite extensive studies on this biosynthetic pathway, the mechanisms underlying the involvement of proteins and enzymes in AgNPs production have not been fully explored. Herein, we reported that Burkholderia contaminans ZCC was able to reduce Ag+ to AgNPs with a diameter of (10±5) nm inside the cell. Exposure of B. contaminans ZCC to Ag+ ions led to significant changes in the functional groups of cellular proteins, with approximately 5.72% of the (C-OH) bonds being converted to (C-C/C-H) (3.61%) and CO (2.11%) bonds, and 4.52% of the CO (carbonyl) bonds being converted to (C-OH) bonds. Furthermore, the presence of Ag+ and AgNPs induced the ability of extracellular electron transfer for ZCC cells via specific membrane proteins, but this did not occur in the absence of Ag+ ions. Proteomic analysis of the proteins and enzymes involved in heavy metal efflux systems, protein secretion system, oxidative phosphorylation, intracellular electron transfer chain, and glutathione metabolism suggests that glutathione S-transferase and ubiquinol-cytochrome c reductase iron-sulfur subunit play importance roles in the biosynthesis of AgNPs. These findings contribute to a deeper understanding of the functions exerted by glutathione S-transferase and ferredoxin-thioredoxin reductase iron-sulfur subunits in the biogenesis of AgNPs, thereby hold immense potential for optimizing biotechnological techniques aimed at enhancing the yield and purity of biosynthetic AgNPs.


Subject(s)
Burkholderia , Metal Nanoparticles , Proteome , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Proteome/metabolism , Burkholderia/metabolism , Proteomics , Bacterial Proteins/metabolism
11.
Chin J Integr Med ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753276

ABSTRACT

Rheumatoid arthritis (RA) is a worldwide public health problem. Interventions to delay or prevent the onset of RA have attracted much attention in recent years, and researchers are now exploring various prevention strategies. At present, there is still no unified consensus for RA prevention, but targeting therapeutic windows and implementing interventions for at-risk individuals are extremely important. Due to the limited number of clinical trials on pharmacologic interventions, further studies are needed to explore and establish optimal intervention regimens and effective measures to prevent progression to RA. In this review, we introduce the RA disease process and risk factors, and present research on the use of both Western and Chinese medicine from clinical perspectives regarding RA prevention. Furthermore, we describe several complete and ongoing clinical studies on the use of Chinese herbal formulae for the prevention of RA.

12.
Nat Commun ; 15(1): 3702, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697969

ABSTRACT

Hippocampal place cells represent the position of a rodent within an environment. In addition, recent experiments show that the CA1 subfield of a passive observer also represents the position of a conspecific performing a spatial task. However, whether this representation is allocentric, egocentric or mixed is less clear. In this study we investigated the representation of others during free behavior and in a task where female mice learned to follow a conspecific for a reward. We found that most cells represent the position of others relative to self-position (social-vector cells) rather than to the environment, with a prevalence of purely egocentric coding modulated by context and mouse identity. Learning of a pursuit task improved the tuning of social-vector cells, but their number remained invariant. Collectively, our results suggest that the hippocampus flexibly codes the position of others in multiple coordinate systems, albeit favoring the self as a reference point.


Subject(s)
CA1 Region, Hippocampal , Animals , Female , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology , Mice , Mice, Inbred C57BL , Place Cells/physiology , Reward , Behavior, Animal/physiology
13.
Dalton Trans ; 53(21): 8905-8909, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38757356

ABSTRACT

A single crystal composed of one-dimensional coordinated polymers, [CdCl2(1-methyl-2-pyridone)]n, has been synthesized and characterized. This compound exhibits outstanding elastic bending due to the molecular spring nature of the CdCl2 coordination framework and weak intermolecular interactions between the coordination chains. Owing to the helical arrangement of organic ligands surrounding the coordination structure, the compound crystallizes in a chiral space group. As a result, it displays compelling circular dichroism spectra and second harmonic generation properties.

14.
Plants (Basel) ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38674516

ABSTRACT

Soybean sprouts constitute a significant segment of the vegetable market due to their nutritional richness, particularly in various flavonoids, which contribute to numerous health benefits. The augmentation of the flavonoid content in soybean sprouts is pivotal for enhancing their economic value. While research has established the potential of blue light in promoting the synthesis of anthocyanins, a subclass of flavonoids known for their health advantages, the precise regulatory mechanisms remain elusive. In this study, we identified a notable upregulation of an R2R3 type MYB transcription factor, GmMYB114, in response to blue light exposure, exhibiting a significant positive correlation with anthocyanin accumulation in soybean sprouts. The functional role of GmMYB114 was validated in soybean hairy roots, wherein its overexpression substantially augmented anthocyanin synthesis. Further investigations employing yeast one-hybrid (Y1H), dual-luciferase reporter (LUC), and GUS assays revealed that GmMYB114 indirectly influences anthocyanin synthesis as it does not directly bind to the promoters of anthocyanin synthesis genes to activate their expression. These findings contribute to elucidating the mechanism underlying blue light-mediated enhancement of anthocyanin synthesis in soybean sprouts, offering valuable insights for harnessing molecular technologies to obtain anthocyanin-enriched soybean sprouts.

15.
Angew Chem Int Ed Engl ; 63(23): e202405514, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38584585

ABSTRACT

Pyroelectric materials hold significant potential for energy harvesting, sensing, and imaging applications. However, achieving high-performance pyroelectricity across a wide temperature range near room temperature remains a significant challenge. Herein, we demonstrate a single crystal of Fe(II) spin-crossover compound shows remarkable pyroelectric properties accompanied by a thermally controlled spin transition. In this material, the uniaxial alignment of polar molecules results in a polarization of the lattice. As the molecular geometry is modulated during a gradual spin transition, the polar axis experiences a colossal thermal expansion with a coefficient of 796×10-6 K-1. Consequently, the material's polarization undergoes significant modulation as a secondary pyroelectric effect. The considerable shift in polarization (pyroelectric coefficient, p=3.7-22 nC K-1cm-2), coupled with a low dielectric constant (ϵ'=4.4-5.4) over a remarkably wide temperature range of 298 to 400 K, suggests this material is a high-performance pyroelectric. The demonstration of pyroelectricity combined with magnetic switching in this study will inspire further investigations in the field of molecular electronics and magnetism.

16.
Biodegradation ; 35(5): 621-639, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38619793

ABSTRACT

In order to explore the operation performance, kinetic characteristics and bacterial community of the short-cut nitrification and denitrification (SND) system, the SND system with pre-cultured short cut nitrification and denitrification sludge was established and operated under different ferrous ion (Fe (II)) conditions. Experimental results showed that the average NH4+-N removal efficiency (ARE) of SND system was 97.3% on Day 5 and maintained a high level of 94.9% ± 1.3% for a long operation period. When the influent Fe(II) concentration increased from 2.3 to 7.3 mg L-1, the sedimentation performance, sludge concentration and organic matter removal performance were improved. However, higher Fe(II) of 12.3 mg L-1 decreased the removal of nitrogen and CODCr with the relative abundance (RA) of Proteobacteria and Bacteroidetes decreased to 30.28% and 19.41%, respectively. Proteobacteria, Bacteroidetes and Firmicutes were the dominant phyla in SND system. Higher Fe(II) level of 12.3 mg L-1 increase the RA of denitrifying genus Trichococcus (33.93%), and the denitrifying genus Thauera and Tolumonas dominant at Fe(II) level of no more than 7.3 mg L-1.


Subject(s)
Bacteria , Bioreactors , Denitrification , Nitrification , Sewage , Kinetics , Bacteria/metabolism , Bioreactors/microbiology , Sewage/microbiology , Ferrous Compounds/metabolism , Nitrogen/metabolism , Waste Disposal, Fluid/methods , Proteobacteria/metabolism
17.
PLoS One ; 19(4): e0298194, 2024.
Article in English | MEDLINE | ID: mdl-38625916

ABSTRACT

INTRODUCTION: Paeonia lactiflora contains diverse active constituents and exhibits various pharmacological activities. However, only partial identification of biologically active substances from P. lactiflora has been achieved using low-throughput techniques. Here, the roots of P. lactiflora, namely, Fenyunu (CK), Dafugui (DFG), and Red Charm (HSML), were studied. The primary and secondary metabolites were investigated using ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESIMS/MS). METHODS: The chemical compounds and categories were detected using broadly targeted UPLC-MS/MS. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and hierarchical clustering analysis (HCA) were carried out for metabolites of different varieties of P. lactiflora. RESULTS: A total of 1237 compounds were detected and classified into 11 categories. HCA, PCA, and OPLS-DA of these metabolites indicated that each variety of P. lactiflora was clearly separated from the other groups. Differential accumulated metabolite analysis revealed that the three P. lactiflora varieties contained 116 differentially activated metabolites (DAMs) involved in flavonoid, flavone, and flavonol metabolism. KEGG pathway analysis revealed that, in 65 pathways, 336 differentially abundant metabolites (DMs) were enriched in the CK and DFG groups; moreover, the type and content of terpenoids were greater in the CK group than in the DFG group. The CK and HSML groups contained 457 DMs enriched in 61 pathways; the type and amount of flavonoids, terpenoids, and tannins were greater in the CK group than in the HSML group. The DFG and HSML groups contained 497 DMs enriched in 65 pathways; terpenoids and alkaloids were more abundant in the HSML variety than in the DFG variety. CONCLUSIONS: A total of 1237 compounds were detected, and the results revealed significant differences among the three P. lactiflora varieties. Among the three P. lactiflora varieties, phenolic acids and flavonoids composed the largest and most diverse category of metabolites, and their contents varied greatly. Therefore, CK is suitable for medicinal plant varieties, and DFG and HSML are suitable for ornamental plant varieties. Twelve proanthocyanidin metabolites likely determined the differences in color among the three varieties.


Subject(s)
Paeonia , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Metabolomics/methods , Flavonoids/chemistry , Chromatography, High Pressure Liquid/methods , Terpenes/metabolism
18.
Ear Nose Throat J ; : 1455613241249043, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642030

ABSTRACT

Esophageal foreign bodies (FBs) are one of the common emergencies in otolaryngology, usually involving objects accidentally swallowed, and generally do not result in severe respiratory distress. This article presents an extremely rare case of an esophageal FB, where a 44-year-old man accidentally ingested an entire mantis shrimp while sucking its flavored tail, and was sent to the emergency department for severe throat pain and difficulty breathing. We immediately performed a laryngoscopy that revealed the FB that obstructs the entrance of the esophagus, obstructing the glottis due to the long shape of the shrimp. The mantis shrimp had barbs on its shell and trying to remove it intact would cause significant damage to the pharyngeal mucosa. Therefore, we extracted the mantis shrimp in segments under general anesthesia and applied electrocoagulation to stop bleeding from the damaged and bleeding posterior pharyngeal mucosa. As an esophagography was performed the following day, there were no signs of esophageal perforation. Through the detailed description and analysis of this case, our aim is to raise clinical awareness among physicians of such rare occurrences. Most important, appropriate examination and procedures of FBs should be performed based on the type, shape, and location of the FB.

19.
ACS Appl Mater Interfaces ; 16(12): 14503-14509, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38499046

ABSTRACT

The activation of proinflammatory M1-type macrophages in the injured lesion accelerates the progression of a spinal cord injury (SCI). However, adverse side effects during systemic treatments targeting M1 macrophages have limited their applications. Nanoplatforms are novel carriers of traditional Chinese medicine because of their great efficiency to deliver and accumulation in the lesion. Herein, we synthesized a modified zeolitic imidazolate framework-8 (ZIF-8) nanoplatform for internalization and accumulation in the injured spinal cord and effective administration for SCI. In vitro and in vivo experiments suggested that Prussian blue and Schisandrin B modified ZIF-8 effectively accumulated in M1 macrophages, inhibited reactive oxygen species (ROS), and polarized the macrophage from proinflammatory M1 to anti-inflammatory M2 for rapid tissue infiltration by reprogramming the metabolic macrophages phenotype. This nanoplatform achieves a synergistic therapeutic effect of immunomodulation and neuroprotection, thereby shedding new light on the application of ZIF-8, and provides great potential for SCI.


Subject(s)
Nanoparticles , Spinal Cord Injuries , Zeolites , Humans , Zeolites/pharmacology , Macrophages , Spinal Cord Injuries/metabolism , Anti-Inflammatory Agents/therapeutic use
20.
J Orthop Surg Res ; 19(1): 195, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515197

ABSTRACT

OBJECTIVE: Despite advancements in spinal metastasis surgery techniques and the rapid development of multidisciplinary treatment models, we aimed to explore the clinical efficacy of spinal metastasis surgery performed by a combined NOMS decision system-utilizing multidisciplinary team and Revised Tokuhashi scoring system, compared with the Revised Tokuhashi scoring system. METHODS: Clinical data from 102 patients with spinal metastases who underwent surgery at three affiliated hospitals of Zunyi Medical University from December 2017 to June 2022 were analysed. The patients were randomly assigned to two groups: 52 patients in the treatment group involving the combined NOMS decision system-utilizing multidisciplinary team and Revised Tokuhashi scoring system (i.e., the combined group), and 50 patients in the treatment group involving the Revised Tokuhashi scoring system only (i.e., the revised TSS-only group). Moreover, there were no statistically significant differences in preoperative general data or indicators between the two groups. Intraoperative and postoperative complications, average hospital stay, mortality rate, and follow-up observation indicators, including the visual analogue scale (VAS) score for pain, Eastern Cooperative Oncology Group (ECOG) performance status, Karnofsky Performance Status (KPS) score, negative psychological assessment score (using the Self-Rating Anxiety Scale, [SAS]), and neurological function recovery score (Frankel functional classification) were compared between the two groups. RESULTS: All 102 patients successfully completed surgery and were discharged. The follow-up period ranged from 12 to 24 months, with an average of (13.2 ± 2.4) months. The patients in the combined group experienced fewer complications such as surgical wound infections 3 patients(5.77%), intraoperative massive haemorrhage 2 patients(3.85%), cerebrospinal fluid leakage 2 patients(3.85%), deep vein thrombosis 4 patients(7.69%),and neurological damage 1 patient(1.92%), than patients in the revised TSS-only group (wound infections,11 patients(22%); intraoperative massive haemorrhage, 8 patients(16%);cerebrospinal fluid leakage,5 patients(10%);deep vein thrombosis,13 patients (26%); neurological damage,2 patients (4%). Significant differences were found between the two groups in terms of surgical wound infections, intraoperative massive haemorrhage, and deep vein thrombosis (P < 0.05). The average postoperative hospital stay in the combined group (7.94 ± 0.28 days) was significantly shorter than that in the revised TSS-only group (10.33 ± 0.30 days) (P < 0.05). Long-term follow-up (1 month, 3 months, 6 months, and 1 year postoperatively) revealed better clinical outcomes in the combined group than in the revised TSS-only group in terms of VAS scores, overall KPS%, neurological function status Frankel classification, ECOG performance status, and SAS scores.(P < 0.05). CONCLUSION: A multidisciplinary team using the NOMS combined with the Revised Tokuhashi scoring system for spinal metastasis surgery showed better clinical efficacy than the sole use of the Revised Tokuhashi scoring system. This personalized, precise, and rational treatment significantly improves patient quality of life, shortens hospital stay, reduces intraoperative and postoperative complications, and lowers mortality rates.


Subject(s)
Spinal Neoplasms , Venous Thrombosis , Humans , Spinal Neoplasms/secondary , Surgical Wound Infection , Quality of Life , Retrospective Studies , Treatment Outcome , Cerebrospinal Fluid Leak/complications , Hemorrhage , Patient Care Team , Venous Thrombosis/complications , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL