Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Plants (Basel) ; 13(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39273887

ABSTRACT

Chrysanthemum morifolium '11-C-2' is a variety of chrysanthemums with high ornamental and tea value, experiencing significant market demand. However, as cultivation areas expand, issues such as viral infection, germplasm degradation, low proliferation coefficient, and slow proliferation rate arise, necessitating the establishment of an efficient in vitro regeneration system. This study, based on the principles of orthogonal experimental design, explored the regeneration system of Chrysanthemum cultivar '11-C-2' using sterile seedlings. The research focused on three key stages: adventitious bud differentiation, rooting culture, and acclimatization-transplantation, employing shoot-bearing stem segments and leaves as explants. The findings indicate that the optimal explant for the Chrysanthemum '11-C-2' sterile seedlings is the shoot-bearing stem segment. The best medium for adventitious bud differentiation was determined to be MS supplemented with 1.5 mg/L 6-BA and 0.5 mg/L NAA. Bud differentiation began on day 17 with a 100% differentiation rate, completing around day 48. The maximum differentiation coefficient reached 87, with an average of 26.67. The adventitious buds were then cultured for rooting in the optimal medium of 1/2 MS supplemented with 0.1 mg/L NAA. Rooting was initiated on day 4 and was completed by day 14, achieving a rooting rate of 97.62%. After a 5-day acclimatization under natural light, the rooted seedlings were transplanted into a growth substrate with a peat-to-vermiculite ratio of 1:2. The plants exhibited optimal growth, with a transplantation survival rate of 100%. The findings provide data support for the efficient large-scale propagation of '11-C-2' and lay the foundation for germplasm preservation and genetic transformation research of tea chrysanthemums.

2.
JACC Adv ; 3(9): 101200, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39247677

ABSTRACT

Background: Catheter ablation atrial fibrillation (AF) is effective, but 20% to 40% of patients will require a repeat ablation. The role of more than 1 repeat ablation is not well known. Objectives: The purpose of this study was to evaluate the effectiveness and incremental benefits of multiple repeat catheter ablations to treat AF in patients. Methods: We retrospectively included patients who underwent their first, second, third, and fourth AF ablation between 2004 and 2019. They were monitored with a 24-to-48-hour Holter every 3 months postablation the first year and every 6 to 12 months thereafter. Recurrence was defined as documented atrial arrhythmia >30 seconds. Outcomes are analyzed by Kaplan-Meier curves and compared by log rank test. Results: We included a total of 2,194 patients (64% with paroxysmal and 36% with nonparoxysmal AF). Mean age was 71 ± 10 years; 67% were male. After 1 ablation, freedom from AF was 52%. Among those 1,052 patients who had recurrences, 576 (55%) underwent a second ablation, 103 (10%) underwent a third procedure, and 20 (2%) underwent a fourth. Success rates for the second, third, and fourth ablation were 57%, 60%, and 40%, respectively, at 5-year follow-up. After the second ablation, freedom from AF in our entire cohort increased from 52% to 66%, with marginal changes after the third (67%) and fourth (67%) procedures. Conclusions: Although repeated ablations demonstrated significant benefits at the individual level, the success rate may drop off after a third. The overall success of the initial cohort was not significantly influenced by the success rates of multiple follow-up ablations.

3.
ACS Omega ; 9(34): 36569-36578, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39220504

ABSTRACT

Oil-type gas disasters are a frequently occurring concern in coal-oil-gas coexistence mines. In order to actively predict the volume of oil-type gas emissions from floor rocks, this study presents an investigative methodology to forecast the geological conditions of floor rocks in front of the roadway face by utilizing the Direct Current (DC) method. The assessment of electrical resistance in rock formations, which is widely employed for identifying geological characteristics, serves as the basis for proposing a geological anomaly index derived from rock resistivity. This index effectively characterizes the stability of rock strata, providing an indirect evaluation of fracture development. As a real-time geological detection index for floor rocks that are 100 m ahead of the roadway face, it enhances predictive capabilities. Moreover, when combined with parameters such as floor rock thickness and permeability, the paper presents simulations of oil-type gas emissions under varying geological conditions. Subsequently, an adaptive optimization of the Back Propagation (BP) neural network is achieved through the Genetic Algorithm Back Propagation Neural Network (GA-BP) model to evaluate the quantity of oil-type gas emissions in roadways. This advanced real-time prediction method is applied in Huangling coal mining to predict the oil-type gas emissions from the floor rocks in the excavation roadway area. The results show consistency with field monitoring outcomes, confirming the accuracy of the predictive model. In conclusion, this advanced real-time prediction technique enables continuous monitoring and real-time forecasting of oil-type gas emissions in front of roadways. This capability facilitates the implementation of specific measures for pre-extraction in gas disaster prevention and control, thereby ensuring the safety of coal mine production. Moreover, the versatility of this advanced real-time prediction method extends to early warnings of rock mass instability-related disasters. Through a comprehensive understanding of subsurface conditions, continuous monitoring of changes, and the application of predictive models, timely actions can be taken to reduce risks and uphold safety standards.

4.
Sensors (Basel) ; 24(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39205091

ABSTRACT

Bolt loosening can significantly impact the accuracy, stability, and safety of equipment. The detection of bolt loosening in a timely manner is crucial for ensuring the safety, reliability, performance, and service life of equipment, structures, and systems. Various methods exist for detecting bolt loosening, such as strain gauges and ultrasonic waves. However, these technologies have some limitations that impede their widespread application. In this paper, for the high-pressure pipe manifolds that may experience leakage accidents due to the loosening of bolts, an early bolt loosening detection method based on digital image correlation is proposed. Initially, a model is established through tensile tests to relate the average strain on the side of the bolt head to the axial force. Subsequently, an industrial camera captures images of bolts with random speckles under operational conditions. Using digital image correlation technology, the average strain in a specific region on the side of the bolt head is calculated. By integrating the average strain into the established relationship model between the average strain and axial force, the axial force of the bolt under operational conditions can be predicted, enabling the early assessment of bolt loosening. The findings show that the average strain on the side of the bolt head increases proportionally with the axial force, indicating a strong linear relationship. This method enables accurate prediction of the bolt's axial force, offering a new approach for identifying the early loosening of bolts in high-pressure manifolds and monitoring structural health.

5.
J Colloid Interface Sci ; 675: 74-83, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38964126

ABSTRACT

Chiral Plasmonic nanomaterials have gradually illustrated intriguing circularly polarized light (CPL)-dependent properties in photocatalysis due to their unique chiral optical activity. However, the connection between chiral characteristics and catalytic performance of these materials in cooperative systems is rarely reported and remains a challenge task. In this work, branched AgAuPt nanoparticles induced by L/d-cysteine (Cys) with strong and perfectly symmetric circular dichroism (CD) signals are synthesized. Chiral branched AgAuPt nanoparticles firstly exhibit superior typical electrocatalytic performance. In the photoelectrocatalytic system, chiral branched AgAuPt nanoparticles demonstrate selective catalytic water splitting performance. Specifically, chiral branched AgAuPt with related CPL irradiation exhibits enhanced acidic hydrogen evolution reaction (HER) performance. Under the continuous irradiation of related CPL, the chiral catalyst generates more heat, which further increases the catalytic activity. This contribution of heat is supported by density functional theory (DFT) calculation results. The changes in chiroptical activity during this process are recorded by variable temperature CD spectra. This work provides a novel paradigm for designing chiral catalysis systems and emphasizes the profound promise of chiral plasmonic nanomaterials as chiral catalysts.

6.
Front Pediatr ; 12: 1280330, 2024.
Article in English | MEDLINE | ID: mdl-38903770

ABSTRACT

Type 1 diabetes mellitus (T1DM) is a metabolic disorder characterized by an absolute deficiency of insulin due to pancreatic failure. Diabetes ketoacidosis (DKA) has emerged as one of the most common complications of T1DM. Although exceedingly rare, the onset of T1DM with DKA may result in lipemia secondary to severe hypertriglyceridemia (HTG), accounting for several cases in the pediatric population. Along this line, plasma exchange treatment in children with DKA and severe hyperlipidemia has only been reported in some cases. In this case report, the diagnosis of an 11-year-old girl with diabetes ketoacidosis accompanied by severe HTG, along with subsequent plasma exchange treatment, is presented. Initially, the patient received initial management with crystalloid fluid bolus and intravenous insulin therapy. Despite rapid correction of acidosis, persistent HTG subsequently prompted the plasma exchange treatment. A total of three sessions were administered over 2 days, leading to a significant reduction in the triglyceride levels and corneal opacity resolution, indicating a successful therapeutic intervention.

7.
World J Stem Cells ; 16(5): 560-574, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817327

ABSTRACT

BACKGROUND: Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved. Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process. AIM: To assess the influence of interleukin-10 (IL-10) on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) following their interaction with macrophages in an inflammatory environment. METHODS: IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment. In this study, we investigated its impact on the proliferation, migration, and osteogenesis of BMSCs. The expression levels of signal transducer and activator of transcription 3 (STAT3) and its activated form, phosphorylated-STAT3, were examined in IL-10-stimulated macrophages. Subsequently, a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling. RESULTS: IL-10-stimulated macrophages underwent polarization to the M2 type through substitution, and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs. Mechanistically, STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages. Specifically, IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response, as evidenced by its diminished impact on the osteogenic differentiation of BMSCs. CONCLUSION: Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs. The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs' osteogenic differentiation.

9.
Int J Implant Dent ; 10(1): 11, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472687

ABSTRACT

OBJECTIVE: This study analyzed and compared the biomechanical properties of maxillary sinus floor mucosa with implants at three different maxillary sinus angles during a modified internal sinus floor elevation procedure. METHODS: 3D reconstruction of the implant, maxillary sinus bone, and membrane were performed. The maxillary sinus model was set at three different angles. Two internal maxillary sinus elevation models were established, and finite element analysis was used to simulate the modified maxillary sinus elevation process. The implant was elevated to 10 mm at three maxillary sinus angles when the maxillary sinus floor membrane was separated by 0 and 4 mm. The stress of the maxillary sinus floor membrane was analyzed and compared. RESULTS: When the maxillary sinus floor membrane was separated by 0 mm and elevated to 10 mm, the peak stress values of the implant on the maxillary sinus floor membrane at three different angles were as follows: maxillary sinus I: 5.14-78.32 MPa; maxillary sinus II: 2.81-73.89 MPa; and maxillary sinus III: 2.82-51.87 MPa. When the maxillary sinus floor membrane was separated by 4 mm and elevated to 10 mm, the corresponding values were as follows: maxillary sinus I: 0.50-7.25 MPa; maxillary sinus II: 0.81-16.55 MPa; and maxillary sinus III: 0.49-22.74 MPa. CONCLUSION: The risk of sinus floor membrane rupture is greatly reduced after adequate dissection of the maxillary sinus floor membrane when performing modified internal sinus elevation in a narrow maxillary sinus. In a wide maxillary sinus, the risk of rupture or perforation of the wider maxillary sinus floor is reduced, regardless of whether traditional or modified internal sinus elevation is performed at the same height.


Subject(s)
Dental Implants , Sinus Floor Augmentation , Dental Implantation, Endosseous/methods , Sinus Floor Augmentation/methods , Maxillary Sinus/surgery , Membranes/surgery
10.
Sci Total Environ ; 925: 171670, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38485020

ABSTRACT

Many studies investigate the plant uptake and metabolism of xenobiotics by hydroponic experiments, however, plants grown in different conditions (hydroponic vs. soil) may result in different behaviors. To explore the potential differences, a comparative study on the uptake, translocation and metabolism of the fungicide phenamacril in crops (wheat/rice) under hydroponic and soil cultivation conditions was conducted. During 7-14 days of exposure, the translocation factors (TFs) of phenamacril were greatly overestimated in hydroponic-wheat (3.6-5.2) than those in soil-wheat systems (1.1-2.0), with up to 3.3 times of difference between the two cultivation systems, implying it should be cautious to extrapolate the results obtained from hydroponic to field conditions. M-144 was formed in soil pore water (19.1-29.9 µg/L) in soil-wheat systems but not in the hydroponic solution in hydroponics; M-232 was only formed in wheat shoots (89.7-103.0 µg/kg) under soil cultivation conditions, however, it was detected in hydroponic solution (20.1-21.2 µg/L), wheat roots (146.8-166.0 µg/kg), and shoots (239.2-348.1 µg/kg) under hydroponic conditions. The root concentration factors (RCFs) and TFs of phenamacril in rice were up to 2.4 and 3.6 times higher than that in wheat for 28 days of the hydroponic exposure, respectively. These results highlighted that cultivation conditions and plant species could influence the fate of pesticides in crops, which should be considered to better assess the potential accumulation and transformation of pesticides in crops.


Subject(s)
Cyanoacrylates , Oryza , Pesticides , Soil Pollutants , Hydroponics , Soil , Crops, Agricultural/metabolism , Pesticides/metabolism , Triticum/metabolism , Oryza/metabolism , Plant Roots/metabolism , Soil Pollutants/analysis
11.
Environ Sci Technol ; 58(3): 1680-1689, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38173396

ABSTRACT

Pesticides are frequently sprayed in greenhouses to ensure crop yields, where airborne particulate matter (PM) may serve as a carrier in depositing and transporting pesticides. However, little is known about the occurrence and fate of PM-borne pesticides in greenhouses. Herein, we examined the distribution, dissipation, and transformation of six commonly used pesticides (imidacloprid, acetamiprid, prochloraz, triadimefon, hexaconazole, and tebuconazole) in greenhouse PM (PM1, PM2.5, and PM10) after application as well as the associated human exposure risks via inhalation. During 35 days of experiment, the six pesticides were detected in all PM samples, and exhibited size- and time-dependent distribution characteristics, with the majority of them (>64.6%) accumulated in PM1. About 1.0-16.4% of initially measured pesticides in PM remained after 35 days, and a total of 12 major transformation products were elucidated, with six of them newly identified. The inhalation of PM could be an important route of human exposure to pesticides in the greenhouse, where the estimated average daily human inhalation dose (ADDinh) of the six individual pesticides was 2.1-1.2 × 104 pg/kg day-1 after application (1-35 days). Our findings highlight the occurrence of pesticides/transformation products in greenhouse PM, and their potential inhalation risks should be further concerned.


Subject(s)
Air Pollutants , Pesticides , Humans , Particulate Matter/analysis , Air Pollutants/analysis , China
12.
Angew Chem Int Ed Engl ; 63(7): e202318043, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38135669

ABSTRACT

A key task in today's inorganic synthetic chemistry is to develop effective reactions, routes, and associated techniques aiming to create new functional materials with specifically desired multilevel structures and properties. Herein, we report an ultrathin two-dimensional layered composite of graphene ribbon and silicate via a simple and scalable one-pot reaction, which leads to the creation of a novel carbon-metal-silicate hybrid family: carbosilicate. The graphene ribbon is in situ formed by unzipping carbon nanotubes, while the ultrathin silicate is in situ obtained from bulk silica or commercial glass; transition metals (Fe or Ni) oxidized by water act as bridging agent, covalently bonding the two structures. The unprecedented structure combines the superior properties of the silicate and the nanocarbon, which triggers some specific novel properties. All processes during synthesis are complementary to each other. The associated synergistic chemistry could stimulate the discovery of a large class of more interesting, functionalized structures and materials.

13.
Front Endocrinol (Lausanne) ; 14: 1271929, 2023.
Article in English | MEDLINE | ID: mdl-37886648

ABSTRACT

Introduction: Type 1 diabetes (T1D) is a serious autoimmune disease with high morbidity and mortality. Early diagnosis and treatment remain unsatisfactory. While the potential for development of T1D biomarkers in circulating exosomes has attracted interest, progress has been limited. This study endeavors to explore the molecular dynamics of plasma exosome proteins in pediatric T1D patients and potential mechanisms correlated with T1D progression. Methods: Liquid chromatography-tandem mass spectrometry with tandem mass tag (TMT)6 labeling was used to quantify exosomal protein expression profiles in 12 healthy controls and 24 T1D patients stratified by age (≤ 6 years old and > 6 years old) and glycated hemoglobin (HbA1c) levels (> 7% or > 7%). Integrated bioinformatics analysis was employed to decipher the functions of differentially expressed proteins, and Western blotting was used for validation of selected proteins' expression levels. Results: We identified 1035 differentially expressed proteins (fold change > 1.3) between the T1D patients and healthy controls: 558 in those ≤ 6-year-old and 588 in those > 6-year-old. In those who reached an HbA1c level < 7% following 3 or more months of insulin therapy, the expression levels of most altered proteins in both T1D age groups returned to levels comparable to those in the healthy control group. Bioinformatics analysis revealed that differentially expressed exosome proteins are primarily related to immune function, hemostasis, cellular stress responses, and matrix organization. Western blotting confirmed the alterations in RAB40A, SEMA6D, COL6A5, and TTR proteins. Discussion: This study delivers valuable insights into the fundamental molecular mechanisms contributing to T1D pathology. Moreover, it proposes potential therapeutic targets for improved T1D management.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Child , Diabetes Mellitus, Type 1/metabolism , Glycated Hemoglobin , Biomarkers , Insulin/therapeutic use , Mass Spectrometry , Blood Proteins
14.
Front Plant Sci ; 14: 1259229, 2023.
Article in English | MEDLINE | ID: mdl-37828931

ABSTRACT

Chrysanthemums are one of the top ten most well-known traditional famous flowers in China and one of the top four cut flowers worldwide, holding a significant position in landscape gardening. The cold temperatures of winter restrict the cultivation, introduction, and application of chrysanthemum, resulting in high costs for year-round production. This severely impacts the ornamental and economic value of chrysanthemum. Therefore, research on cold tolerance is of vital importance for guiding chrysanthemum production and application. With the development of genomics, transcriptomics, metabolomics, and other omics approaches, along with high-throughput molecular marker technologies, research on chrysanthemum cold tolerance has been continuously advancing. This article provides a comprehensive overview of the progress in cold tolerance research from various aspects, including chrysanthemum phenotype, physiological mechanisms, the forward genetics, molecular mechanisms, and breeding. The aim is to offer insights into the mechanisms of cold tolerance in chrysanthemum and provide reference for in-depth research and the development of new cold tolerance chrysanthemum varieties.

15.
Viruses ; 15(8)2023 08 20.
Article in English | MEDLINE | ID: mdl-37632112

ABSTRACT

Chrysanthemum is an important functional plant that is used for food, medicine and tea. Functional chrysanthemums become infected with viruses all around the world, seriously lowering their quality and yield. Viral infection has become an important limiting factor in chrysanthemum production. Functional chrysanthemum is often propagated asexually by cutting during production, and viral infection of seedlings is becoming increasingly serious. Chrysanthemums can be infected by a variety of viruses causing different symptoms. With the development of biotechnology, virus detection and virus-free technologies for chrysanthemum seedlings are becoming increasingly effective. In this study, the common virus species, virus detection methods and virus-free technology of chrysanthemum infection are reviewed to provide a theoretical basis for virus prevention, treatment and elimination in functional chrysanthemum.


Subject(s)
Chrysanthemum , Viruses , Biotechnology , Seedlings
16.
Chemosphere ; 340: 139881, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611772

ABSTRACT

For indium recycling from LCD panels, the decomposition of 9 commonly used liquid crystal monomers (LCMs) that were in contact with sulfuric acid (i.e., leaching agent) and extraction/stripping agents, has been investigated in the present study. Also their biological toxicity changes and transfer have been studied. The results showed that 7 of the 9 LCMs were decomposed in the sulfuric acid agent, while the reaction time and temperature had no effect on the types of the decomposition products. The maximum decomposition rate was 96% when the concentration of the sulfuric acid was increased to 12 M. The time required for a 100% decomposition of the various LCMs in a 5 M sulfuric acid ranged from 41 h to 150 h. Also, Estimation Programs Interface (EPI) and ECOSAR calculations were used to compare the biotoxicity of the LCMs and the decomposition products. The results from the EPI calculations showed that the biological half-lives of the decomposition products were significantly reduced as compared with the LCMs, from the original highest value of 329.2 days-92.71 days. Furthermore, the ECOSAR calculations showed that the biological toxicity of the decomposition products for aquatic organisms was lower than for the LCMs, but they were still toxic and harmful substances. In addition, the transfer rates of the undecomposed LCMs and decomposition products in different extractants remained above 90%, and reached 100% at most. After stripping with hydrochloric acid, more than 70% of the undecomposed LCMs became enriched in the aqueous solution, while the products were enriched in the extractant.


Subject(s)
Liquid Crystals , Sulfuric Acids , Computer Simulation , Hydrochloric Acid
17.
Nanoscale ; 15(15): 6976-6983, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37009858

ABSTRACT

Sn-free Cu2ZnGeSe4 (CZGSe) is emerging as a promising non-toxic and earth-abundant photovoltaic absorber material due to its attractive electrical and optical properties as well as its high theoretical conversion efficiency. Nevertheless, no photovoltaic device fabricated through the green electrodeposition process has yet been reported, likely due to the poor solubility of Ge-based salts and harsh electrodeposition conditions. Herein, we propose a GeSe-evoked synchronous strategy involving a Ge incorporation and selenization-regulated co-heating process of GeSe and Se, following electrodeposition of a Cu-Zn preformed layer. We experimentally found that the low-melting-point GeSe could promote the crystal growth and induce a high-quality bulk absorber layer and good back interface. In the GeSe-promoted sample, it was found that MoSe2 could ensure a good back quasi-Ohmic contact, and the band bending at the grain boundaries (GBs) was favorably inverted. Moreover, the depletion region width was also prolonged, and the deleterious CuZn near EF was passivated, leading to an increased carrier separation. In turn, a surprising progress in device performance was found, achieving a ground-breaking efficiency of 3.69%, and it could fill the bank of green electrodeposited CZGSe-based solar cells.

18.
Clin Implant Dent Relat Res ; 25(3): 458-472, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37042239

ABSTRACT

BACKGROUND: We have modified the internal sinus elevation by combining it with the sinus mucoperiosteum stripping procedure, which further increases the indications for the internal lift. Similar long-term clinical follow-up studies and three-dimensional finite element analyses are rare. OBJECTIVE: This study aimed to investigate the feasibility of the modified internal sinus floor elevation method in patients with low residual bone height using a three-dimensional (3D) finite element model and report on the long-term outcomes. MATERIALS AND METHODS: Overall, 99 implants were placed in 86 patients. All patients were followed-up for 3-24 months. The modified internal sinus floor elevation was dynamically simulated using a 3D finite element model, and the stress of the sinus membrane was measured. RESULTS: In trial group A (modified internal sinus floor elevation group), 57 implants were placed in 52 patients. The sinus floor height was lifted by 6.5 mm (95%confidence interval (CI): 6.2-6.8). The perforation rate was 8.8%, and the implant survival rate was 96.5%. In control group B (external sinus floor elevation group), 42 implants were placed in 34 patients. The sinus floor height was lifted by 8.8 mm (95%CI: 8.4-9.3). The perforation rate was 14.3%, and the implant survival rate was 100%. In trial group A, compared with the control group B, perforation decreased by 5.5% (odds ratio = 0.50 and 95%CI: 0.14-1.78; p = 0.282), and the sinus floor lift height was 2.3 mm lower (95%CI, 1.8-2.9; p < 0.001). The finite element analysis showed that the peak stress of the sinus membrane increased with an increase in height elevation and degree of membrane separation. CONCLUSION: Our findings indicate the positive clinical outcomes in patients with low RBH associated with the modified internal sinus elevation procedure.


Subject(s)
Dental Implants , Sinus Floor Augmentation , Humans , Dental Implantation, Endosseous/methods , Maxilla/surgery , Maxillary Sinus/surgery , Retrospective Studies , Sinus Floor Augmentation/methods , Treatment Outcome
19.
Front Plant Sci ; 14: 1100876, 2023.
Article in English | MEDLINE | ID: mdl-36778700

ABSTRACT

The chloroplast genomes of angiosperms usually have a stable circular quadripartite structure that exhibits high consistency in genome size and gene order. As one of the most diverse genera of angiosperms, Carex is of great value for the study of evolutionary relationships and speciation within its genus, but the study of the structure of its chloroplast genome is limited due to its highly expanded and restructured genome with a large number of repeats. In this study, we provided a more detailed account of the chloroplast genomes of Carex using a hybrid assembly of second- and third-generation sequencing and examined structural variation within this genus. The study revealed that chloroplast genomes of four Carex species are significantly longer than that of most angiosperms and are characterized by high sequence rearrangement rates, low GC content and gene density, and increased repetitive sequences. The location of chloroplast genome structural variation in the species of Carex studied is closely related to the positions of long repeat sequences; this genus provides a typical example of chloroplast structural variation and expansion caused by long repeats. Phylogenetic relationships constructed based on the chloroplast protein-coding genes support the latest taxonomic system of Carex, while revealing that structural variation in the chloroplast genome of Carex may have some phylogenetic significance. Moreover, this study demonstrated a hybrid assembly approach based on long and short reads to analyze complex chloroplast genome assembly and also provided an important reference for the analysis of structural rearrangements of chloroplast genomes in other taxa.

20.
Materials (Basel) ; 17(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38204048

ABSTRACT

Due to the impact of economic and social development on the environment, there is an increasing demand for manufactured sand to replace natural sand as fine aggregate for concrete. At the same time, the effect of admixtures on the rheological properties and compressive strength of concrete is crucial in civil engineering applications. In this study, with the Box-Behnken test model, we analyzed and investigated the impact of a composite admixture of stone powder (SP), pulverized fuel ash (PFA), and silicon fume (SF) on the compressive strength of siliceous manufactured sand concrete using response surface methodology (RSM). At the same time, the rheological properties of the siliceous artificial sand and river sand concrete were analyzed. The prediction of the compressive strength of siliceous artificial sand concrete was developed using multiple regression analysis, the factors of which were SP, PFA, and SF content, and the response value was compressive strength. Furthermore, response surface and contour lines were used to analyze the impact of composite admixtures. It is shown that the compounding of SP, PFA, and SF improve the rheological properties of manufactured sand concrete. For the single factor, SP has the greatest effect on the compressive strength of mechanism sand concrete and SF has the least effect. For compounding, SP and PFA have the most significant effect on the compressive strength of artificial sand shotcrete, and the compounding of PFA and SF have the least effect.

SELECTION OF CITATIONS
SEARCH DETAIL