Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 158: 106674, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39088942

ABSTRACT

Alveolar bone defects caused by tumor, trauma and inflammation can lead to the loss of oral function and complicate denture restoration. Currently, guided bone regeneration (GBR) barrier membranes for repairing bone defect cannot effectively promote bone regeneration due to their unstable degradation rate and poor antibacterial properties. Furthermore, they require additional tailoring before implantation. Therefore, this study developed a visible light-curing hydrogel membrane (CF-Cu) comprising methacrylated carboxymethyl chitosan (CMCS-MA), silk fibroin (SF), and copper nanoparticles (Cu NPs) to address these shortcomings of commercial membranes. The CF-Cu hydrogel, characterized by scanning electron microscopy (SEM), a universal testing machine, and swelling and degradation tests, demonstrated a smooth porous network structure, suitable swelling ratio, biodegradability, and enhanced mechanical strength. Cytotoxicity and hemolysis tests in vitro demonstrated excellent cyto- and hemo-compatibility of the CF-Cu hydrogel extracts. Additionally, evaluation of antibacterial properties in vitro, including colony forming unit (CFU) counts, MTT assays, and live/dead fluorescence staining, showed that the CF-Cu hydrogel exhibited excellent antibacterial properties, inhibiting over 80% of S. aureus, S. mutans, and P. gingivalis with CF-1Cu hydrogel compared to the control group. Moreover, evaluation of osteogenic differentiation of rBMSCs in vitro suggested that the CF-1Cu hydrogel significantly improved alkaline phosphatase (ALP) activity and the mineralization of extracellular matrix, up-regulating the expressions of osteogenesis-related genes (Runx2, ALP, Col-1, OPN and BSP). In summary, these results indicated that CF-1Cu hydrogel exhibited excellent cytocompatibility, antibacterial and osteogenic properties in vitro. Therefore, the CF-1Cu hydrogel holds potential as a viable material for application in GBR procedures aimed at addressing bone defects.

2.
Macromol Biosci ; : e2400080, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752628

ABSTRACT

Controlling infections while reducing the use of antibiotics is what doctors as well as researchers are looking for. As innovative smart materials, photothermal materials can achieve localized heating under light excitation for broad-spectrum bacterial inhibition. A polydopamine/chitosan/ß-glycerophosphate temperature-sensitive hydrogel with excellent antibacterial ability is synthesized here. Initially, the hydrogel has good biocompatibility. In vitro experiments reveal its noncytotoxic property when cocultured with gingival fibroblasts and nonhemolytic capability. Concurrently, the in vivo biocompatibility is confirmed through liver and kidney blood markers and staining of key organs. Crucially, the hydrogel has excellent photothermal conversion performance, which can realize the photothermal conversion of hydrogel up to 3 mm thickness. When excited by near-infrared light, localized heating is attainable, resulting in clear inhibition impacts on both Staphylococcus aureus and Escherichia coli, with the inhibition rates of 91.22% and 96.69%, respectively. During studies on mice's infected wounds, it is observed that the hydrogel can decrease S. aureus' presence in the affected area when exposed to near-infrared light, and also lessen initial inflammation and apoptosis, hastening tissue healing. These findings provide valuable insights into the design of antibiotic-free novel biomaterials with good potential for clinical applications.

3.
Clin Oral Investig ; 26(12): 7287-7297, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35976495

ABSTRACT

OBJECTIVES: The study aims to investigate surface properties and microbial adhesion of various dental polymers fabricated by different manufacturing techniques before and after thermocycling. MATERIALS AND METHODS: The following six materials were used to fabricate disk-shaped specimens: conventional denture polymer (Vertex Acrylic Resin, VAR), CAD/CAM denture polymer (Organic PMMA eco Pink, OP), conventional temporary polymer (Protemp™ 4, PT), CAD/CAM temporary polymer (Die Material, DM), conventional denture framework polymer (BioHPP, PB), and CAD/CAM denture framework polymer (breCAM.BioHPP, CB). The specimens were tested before and after thermocycling (5000 and 10,000 cycles, 5 °C/55 °C). Surface roughness (SR), hydrophobicity, and surface topography were determined by profilometry, water contact angle, and scanning electron microscopy (SEM). Then specimens were incubated with Staphylococcus aureus, Streptococcus mutans, and Candida albicans for 24 h, respectively. Microbial adhesion was assessed using colony-forming unit counts, XTT assay, and SEM. RESULTS: SR and hydrophobicity of VAR group were higher than that of OP group. S. aureus and C. albicans adhesion on VAR and PT groups were higher than that on OP and DM groups, respectively. There was no difference in surface properties and microbial adhesion between PB and CB groups. After thermocycling, SR (expect OP group) of all materials increased and hydrophobicity decreased, and the amount and activity of S. aureus and C. albicans adhesion also increased. The adhesion of S. aureus and C. albicans showed a moderate positive correlation with SR, independent of hydrophobicity. CONCLUSIONS: CAD/CAM denture polymers and temporary polymers showed less S. aureus and C. albicans adhesion when compared to conventional ones, which were mainly affected by surface roughness, independent of hydrophobicity. Thermocycling could increase surface roughness, decrease hydrophobicity, and affect microbial adhesion of the materials. CLINICAL SIGNIFICANCE: CAD/CAM dental polymers may be a better choice for the manufacture of temporary restorations and dentures to reduce microbial adhesion.


Subject(s)
Polymers , Staphylococcus aureus , Materials Testing , Surface Properties , Computer-Aided Design , Candida albicans , Dental Materials , Polymethyl Methacrylate
SELECTION OF CITATIONS
SEARCH DETAIL