Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Front Plant Sci ; 14: 1145624, 2023.
Article in English | MEDLINE | ID: mdl-37063183

ABSTRACT

Cultivated peanut (Arachis hypogaea) is a leading protein and oil-providing crop and food source in many countries. At the same time, it is affected by a number of biotic and abiotic stresses. O-methyltransferases (OMTs) play important roles in secondary metabolism, biotic and abiotic stress tolerance. However, the OMT genes have not been comprehensively analyzed in peanut. In this study, we performed a genome-wide investigation of A. hypogaea OMT genes (AhOMTs). Gene structure, motifs distribution, phylogenetic history, genome collinearity and duplication of AhOMTs were studied in detail. Promoter cis-elements, protein-protein interactions, and micro-RNAs targeting AhOMTs were also predicted. We also comprehensively studied their expression in different tissues and under different stresses. We identified 116 OMT genes in the genome of cultivated peanut. Phylogenetically, AhOMTs were divided into three groups. Tandem and segmental duplication events played a role in the evolution of AhOMTs, and purifying selection pressure drove the duplication process. AhOMT promoters were enriched in several key cis-elements involved in growth and development, hormones, light, and defense-related activities. Micro-RNAs from 12 different families targeted 35 AhOMTs. GO enrichment analysis indicated that AhOMTs are highly enriched in transferase and catalytic activities, cellular metabolic and biosynthesis processes. Transcriptome datasets revealed that AhOMTs possessed varying expression levels in different tissues and under hormones, water, and temperature stress. Expression profiling based on qRT-PCR results also supported the transcriptome results. This study provides the theoretical basis for further work on the biological roles of AhOMT genes for developmental and stress responses.

2.
Molecules ; 27(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36296386

ABSTRACT

Standardized treatment guidelines and effective drugs are not available for human triple-negative breast cancer (TNBC). Many efforts have recently been exerted to investigate the efficacy of natural compounds as anticancer agents owing to their low toxicity. However, no study has examined the effects of isobavachalcone (IBC) on the programmed cell death (PCD) of human triple-negative breast MDA-MB-231 cancer cells. In this study, IBC substantially inhibited the proliferation of MDA-MB-231 cells in concentration- and time-dependent manners. In addition, we found that IBC induced multiple cell death processes, such as apoptosis, necroptosis, and autophagy in MDA-MB-231 cells. The initial mechanism of IBC-mediated cell death in MDA-MB-231 cells involves the downregulation of Akt and p-Akt-473, an increase in the Bax/Bcl-2 ratio, and cleaved caspases-3 induced apoptosis; the upregulation of RIP3, p-RIP3 and MLKL induced necroptosis; as well as a simultaneous increase in LC3-II/I ratio induced autophagy. In addition, we observed that IBC induced mitochondrial dysfunction, thereby decreasing cellular ATP levels and increasing reactive oxygen species accumulation to induce PCD. These results suggest that IBC is a promising lead compound with anti-TNBC activity.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , bcl-2-Associated X Protein , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Adenosine Triphosphate/pharmacology , Cell Proliferation
3.
Front Genet ; 13: 966092, 2022.
Article in English | MEDLINE | ID: mdl-36072670

ABSTRACT

Due to its high genetic diversity and broad host range, Ralstonia solanacearum, the causative phytopathogen of the bacterial wilt (BW) disease, is considered a "species complex". The R. solanacearum strain FJ1003 belonged to phylotype I, and was isolated from the Fuzhou City in Fujian Province of China. The pathogen show host specificity and infects tobacco, especially in the tropical and subtropical regions. To elucidate the pathogenic mechanisms of FJ1003 infecting tobacco, a complete genome sequencing of FJ1003 using single-molecule real-time (SMRT) sequencing technology was performed. The full genome size of FJ1003 was 5.90 Mb (GC%, 67%), containing the chromosome (3.7 Mb), megaplasmid (2.0 Mb), and small plasmid (0.2 Mb). A total of 5133 coding genes (3446 and 1687 genes for chromosome and megaplasmid, respectively) were predicted. A comparative genomic analysis with other strains having the same and different hosts showed that the FJ1003 strain had 90 specific genes, possibly related to the host range of R. solanacearum. Horizontal gene transfer (HGT) was widespread in the genome. A type Ⅲ effector protein (Rs_T3E_Hyp14) was present on both the prophage and genetic island (GI), suggesting that this gene might have been acquired from other bacteria via HGT. The Rs_T3E_Hyp14 was proved to be a virulence factor in the pathogenic process of R. solanacearum through gene knockout strategy, which affects the pathogenicity and colonization ability of R. solanacearum in the host. Therefore, this study will improve our understanding of the virulence of R. solanacearum and provide a theoretical basis for tobacco disease resistance breeding.

4.
Front Plant Sci ; 13: 814015, 2022.
Article in English | MEDLINE | ID: mdl-35386666

ABSTRACT

Peanut embryo development is easily affected by a variety of nutrient elements in the soil, especially the calcium level. Peanut produces abortive embryos in calcium-deficient soil, but underlying mechanism remains unclear. Thus, identifying key transcriptional regulators and their associated regulatory networks promises to contribute to a better understanding of this process. In this study, cellular biology and gene expression analyses were performed to investigate peanut embryo development with the aim to discern the global architecture of gene regulatory networks underlying peanut embryo abortion under calcium deficiency conditions. The endomembrane systems tended to disintegrate, impairing cell growth and starch, protein and lipid body accumulation, resulting in aborted seeds. RNA-seq analysis showed that the gene expression profile in peanut embryos was significantly changed under calcium deficiency. Further analysis indicated that multiple signal pathways were involved in the peanut embryo abortion. Differential expressed genes (DEGs) related to cytoplasmic free Ca2+ were significantly altered. DEGs in plant hormone signaling pathways tended to be associated with increased IAA and ethylene but with decreased ABA, gibberellin, cytokinin, and brassinosteroid levels. Certain vital genes, including apoptosis-inducing factor, WRKYs and ethylene-responsive transcription factors, were up-regulated, while key regulators of embryo development, such as TCP4, WRI1, FUS3, ABI3, and GLK1 were down-regulated. Weighted gene co-expression network analysis (WGCNA) identified 16 significant modules associated with the plant hormone signaling, MAPK signaling, ubiquitin mediated proteolysis, reserve substance biosynthesis and metabolism pathways to decipher regulatory network. The most significant module was darkolivegreen2 and FUS3 (AH06G23930) had the highest connectivity among this module. Importantly, key transcription factors involved in embryogenesis or ovule development including TCP4, GLK1, ABI3, bHLH115, MYC2, etc., were also present in this module and down regulated under calcium deficiency. This study presents the first global view of the gene regulatory network involved in peanut embryo abortion under calcium deficiency conditions and lays foundation for improving peanut tolerances to calcium deficiency by a targeted manipulation of molecular breeding.

5.
Front Plant Sci ; 13: 1048168, 2022.
Article in English | MEDLINE | ID: mdl-36684803

ABSTRACT

Bacterial wilt disease (BWD), caused by Ralstonia solanacearum is a major challenge for peanut production in China and significantly affects global peanut field productivity. It is imperative to identify genetic loci and putative genes controlling resistance to R. solanacearum (RRS). Therefore, a sequencing-based trait mapping approach termed "QTL-seq" was applied to a recombination inbred line population of 581 individuals from the cross of Yueyou 92 (resistant) and Xinhuixiaoli (susceptible). A total of 381,642 homozygous single nucleotide polymorphisms (SNPs) and 98,918 InDels were identified through whole genome resequencing of resistant and susceptible parents for RRS. Using QTL-seq analysis, a candidate genomic region comprising of 7.2 Mb (1.8-9.0 Mb) was identified on chromosome 12 which was found to be significantly associated with RRS based on combined Euclidean Distance (ED) and SNP-index methods. This candidate genomic region had 180 nonsynonymous SNPs and 14 InDels that affected 75 and 11 putative candidate genes, respectively. Finally, eight nucleotide binding site leucine rich repeat (NBS-LRR) putative resistant genes were identified as the important candidate genes with high confidence. Two diagnostic SNP markers were validated and revealed high phenotypic variation in the different resistant and susceptible RIL lines. These findings advocate the expediency of the QTL-seq approach for precise and rapid identification of candidate genomic regions, and the development of diagnostic markers that are applicable in breeding disease-resistant peanut varieties.

6.
BMC Med Imaging ; 21(1): 133, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34530768

ABSTRACT

BACKGROUND: To compare the changes in quantitative parameters and the size and degree of 18F-fluorodeoxyglucose ([18F]FDG) uptake of malignant tumor lesions between Bayesian penalized-likelihood (BPL) and non-BPL reconstruction algorithms. METHODS: Positron emission tomography/computed tomography images of 86 malignant tumor lesions were reconstructed using the algorithms of ordered subset expectation maximization (OSEM), OSEM + time of flight (TOF), OSEM + TOF + point spread function (PSF), and BPL. [18F]FDG parameters of maximum standardized uptake value (SUVmax), SUVmean, metabolic tumor volume (MTV), total lesion glycolysis (TLG), and signal-to-background ratio (SBR) of these lesions were measured. Quantitative parameters between the different reconstruction algorithms were compared, and correlations between parameter variation and lesion size or the degree of [18F]FDG uptake were analyzed. RESULTS: After BPL reconstruction, SUVmax, SUVmean, and SBR were significantly increased, MTV was significantly decreased. The difference values of %ΔSUVmax, %ΔSUVmean, %ΔSBR, and the absolute value of %ΔMTV between BPL and OSEM + TOF were 40.00%, 38.50%, 33.60%, and 33.20%, respectively, which were significantly higher than those between BPL and OSEM + TOF + PSF. Similar results were observed in the comparison of OSEM and OSEM + TOF + PSF with BPL. The %ΔSUVmax, %ΔSUVmean, and %ΔSBR were all significantly negatively correlated with the size and degree of [18F]FDG uptake in the lesions, whereas significant positive correlations were observed for %ΔMTV and %ΔTLG. CONCLUSION: The BPL reconstruction algorithm significantly increased SUVmax, SUVmean, and SBR and decreased MTV of tumor lesions, especially in small or relatively hypometabolic lesions.


Subject(s)
Algorithms , Fluorodeoxyglucose F18/pharmacokinetics , Image Processing, Computer-Assisted/methods , Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals/pharmacokinetics , Adult , Aged , Aged, 80 and over , Bayes Theorem , Female , Humans , Male , Middle Aged , Neoplasms/metabolism , Sensitivity and Specificity
7.
J Bioenerg Biomembr ; 51(3): 239-248, 2019 06.
Article in English | MEDLINE | ID: mdl-31062127

ABSTRACT

Hypoxia inducible factor-1α (HIF-1α) plays a central role in cell survival, invasion, metastasis and angiogenesis, and also is emerging as an important target in anti-cancer drug discovery. In the present study, bishonokiol A, a dimeric neolignan isolated from Magnolia grandiflora, was identified as a novel HIF-1α inhibitor. We here demonstrated that in a dose-dependent manner, bishonokiol A inhibited metastasis-related cell invasion and migration of cobalt chloride (CoCl2)-induced MCF-7 and MDA-MB-231 cells, associating with the reduction in HIF-1α levels. Transfection of MDA-MB-231 cells with HIF-1α small interfering ribonucleic acid (siRNA) resulted in a reduction in cell invasion and migration. Furthermore, we found that bishonokiol A not only inhibited the synthesis of HIF-1α protein and protein kinase B (AKT-473) phosphorylation without affecting the expression of HIF-1α mRNA or ubiquitination degradation, but also inhibited the expression of matrix metalloproteinase-9 (MMP-9) and promoter activity. Nude mice bearing MDA-MB-231 cells incubation were treated with bishonokiol A and results showed that bishonokiol A exhibited potent antitumor activity and low toxicity. Therefore, we suggest that bishonokiol A may be a potential inhibitor of HIF-1α and effective antitumor agent for breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Cell Movement/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lignans/pharmacology , Neoplasm Proteins/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Mice , Mice, Nude , Neoplasm Invasiveness , Xenograft Model Antitumor Assays
8.
Pharmazie ; 74(5): 290-294, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31109399

ABSTRACT

In recent years, "drug repurposing" has become an important approach and focus of studies on anti-tumor drug research and development (R&D). As one of the first-generation broad-spectrum imidazole anti-fungal drugs, miconazole (MCZ) exhibits anti-tumor effects in addition to its anti-fungal effect. However, no report has focused on examining the effect of MCZ on the proliferation and cell-death of human breast cancer MDA-MB-231 cells. MCZ significantly inhibited the proliferation of MDA-MB-231 cells in a concentration- and time-dependent manner. We also observed that MCZ induced both apoptosis and necroptosis in MDA-MB-231 cells. Transmission electron microscopy showed submicroscopic structures in these cells, which correspond to necrotic features, in addition to the characteristic features of apoptosis. Pretreatment of cells with z-VAD-fmk, an apoptosis inhibitor or Nec-1, a necroptosis inhibitor, significantly increased their viability compared with MCZ treatment. The initial mechanism of MCZ-mediated cell death in human breast cancer MDA-MB-231 cells involves an increase in the Bax/Bcl-2 ratio, downregulation of apoptosis induced by Akt and p-Akt-473, a simultaneous upregulation of the receptor-interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) protein expression, and ROS production to induce necroptosis. Our results suggest that MCZ may be a potential lead compound for the development of anti-breast cancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Miconazole/pharmacology , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Necroptosis/drug effects , Necrosis/drug therapy , Receptor-Interacting Protein Serine-Threonine Kinases
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(2): 169-174, 2019 02 28.
Article in Chinese | MEDLINE | ID: mdl-30890504

ABSTRACT

OBJECTIVE: To investigate the effects of methanol-ethyl acetate partitioned fractions from Descurainia sophia (MEDS) on the proliferation and apoptosis of human non-small cell lung cancer H1975 cells. METHODS: The systemic solvent extraction method was used to preliminary separation of the effective fractions in the methanol extract of Descurainia sophia. The cytotoxicity of each extract (5, 10, 20, 40, and 80 µg/mL) was tested using MTT assay. Colony cloning method was used to assess the effect of different concentrations of methanol-ethyl acetate partitioned fractions from MEDS (5, 10, 20, 40, and 80 µg/ mL) on the proliferation of H1975 cells. Flow cytometric analysis with Annexin V-FITC/PI staining was performed to detect the apoptosis of the cells after treatment with different concentrations of MEDS fractions (10, 20, and 40 µg/mL). Western blotting was used to evaluate the effects of MEDS fractions on the expressions of apoptosis-related proteins Akt, Bax, and Bcl-2. The anti-tumor activity of 100 mg/kg MEDS fractions was tested in a nude mouse model bearing H1975 cell xenografts. RESULTS: MTT assay and colony forming experiment showed that MEDS fractions significantly inhibited the proliferation of H1975 cells in a dose-and time-dependent manner (P < 0.05). The results of flow cytometry showed that MEDS fractions induced obvious apoptosis of H1975 cells in a concentration-dependent manner (P < 0.05). MEDS fractions also significantly decreased the expressions of Bcl-2 and Akt protein and increased the protein expression of Bax (P < 0.05). In the tumor-bearing nude mouse model, MEDS fractions showed potent anti-tumor effects with a low toxicity to affect the body weight and organs of the mice. CONCLUSIONS: The methanol-ethyl acetate partitioned fractions from MEDS show potent anti-tumor activity both in vivo and in vitro, suggesting their value as promising therapeutic agents against lung cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Lung Neoplasms/pathology , Plant Extracts/pharmacology , Acetates , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Heterografts , Humans , Methanol , Mice , Mice, Nude , Plant Extracts/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...