Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Comput Biol Med ; 172: 108287, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503089

ABSTRACT

Protein-protein interactions (PPIs) have shown increasing potential as novel drug targets. The design and development of small molecule inhibitors targeting specific PPIs are crucial for the prevention and treatment of related diseases. Accordingly, effective computational methods are highly desired to meet the emerging need for the large-scale accurate prediction of PPI inhibitors. However, existing machine learning models rely heavily on the manual screening of features and lack generalizability. Here, we propose a new PPI inhibitor prediction method based on autoencoders with adversarial training (named PPII-AEAT) that can adaptively learn molecule representation to cope with different PPI targets. First, Extended-connectivity fingerprints and Mordred descriptors are employed to extract the primary features of small molecular compounds. Then, an autoencoder architecture is trained in three phases to learn high-level representations and predict inhibitory scores. We evaluate PPII-AEAT on nine PPI targets and two different tasks, including the PPI inhibitor identification task and inhibitory potency prediction task. The experimental results show that our proposed PPII-AEAT outperforms state-of-the-art methods.


Subject(s)
Machine Learning , Protein Interaction Mapping , Protein Interaction Mapping/methods
2.
Small ; : e2400593, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529744

ABSTRACT

As a kind of flexible electronic device, flexible pressure sensor has attracted wide attention in medical monitoring and human-machine interaction. With the continuous deepening of research, high-sensitivity sensor is developing from single function to multi-function. However, Current multifunctional sensors lack the ability to integrate joule heating, detect sliding friction, and self-healing. Herein, a MXene/polyurethane (PU) flexible pressure sensor with a self-healing property for joule heating and friction sliding is fabricated. The MXene/PU sensitive layer with special spinosum structure is prepared by a simple spraying method. After face-to-face assembly of the sensitive layers, the MXene/PU flexible pressure sensor is obtained and showed excellent sensitivity (150.65 kPa-1), fast response/recovery speed (75.5/63.9 ms), and good stability (10 000 cycles). Based on the self-healing property of PU, the sensor also has the ability to heal after mechanical damage. In addition, the sensor realizes the joule heating function under low voltage, and has the real-time monitoring ability of sliding objects. Combined with low cost and simple manufacturing method, the multi-functional MXene/PU flexible sensor shows a wide range of application potential in human activity monitoring, thermal management, and slip recognition.

3.
Comput Biol Med ; 161: 107032, 2023 07.
Article in English | MEDLINE | ID: mdl-37230018

ABSTRACT

Identifying small molecule protein-protein interaction modulators (PPIMs) is a highly promising and meaningful research direction for drug discovery, cancer treatment, and other fields. In this study, we developed a stacking ensemble computational framework, SELPPI, based on a genetic algorithm and tree-based machine learning method for effectively predicting new modulators targeting protein-protein interactions. More specifically, extremely randomized trees (ExtraTrees), adaptive boosting (AdaBoost), random forest (RF), cascade forest, light gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost) were used as basic learners. Seven types of chemical descriptors were taken as the input characteristic parameters. Primary predictions were obtained with each basic learner-descriptor pair. Then, the 6 methods mentioned above were used as meta learners and trained on the primary prediction in turn. The most efficient method was utilized as the meta learner. Finally, the genetic algorithm was used to select the optimal primary prediction output as the input of the meta learner for secondary prediction to obtain the final result. We systematically evaluated our model on the pdCSM-PPI datasets. To our knowledge, our model outperformed all existing models, which demonstrates its great power.


Subject(s)
Machine Learning , Random Forest , Drug Discovery
4.
Chem Commun (Camb) ; 59(20): 2974-2977, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36807350

ABSTRACT

A near-infrared fluorescent nanoprobe based on semiconducting polymer nanoparticles (SPNs) for the detection of senescence-associated ß-gal (SA-ß-gal) is developed. Benefiting from the intrinsic lysosome-locating feature, this probe can be successfully used for the visualization of SA-ß-gal in living cells.


Subject(s)
Cellular Senescence , Lysosomes , Cells, Cultured , Coloring Agents , beta-Galactosidase
5.
mBio ; 14(1): e0264222, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36633419

ABSTRACT

Parasite infections affect human and animal health significantly and contribute to a major burden on the global economy. Parasitic protozoan viruses (PPVs) affect the protozoan parasites' morphology, phenotypes, pathogenicity, and growth rates. This discovery provides an opportunity to develop a novel preventive and therapeutic strategy for parasitic protozoan diseases (PPDs). Currently, there is greater awareness regarding PPVs; however, knowledge of viruses and their associations with host diseases remains limited. Parasite-host interactions become more complex owing to PPVs; however, few studies have investigated underlying viral regulatory mechanisms in parasites. In this study, we reviewed relevant studies to identify studies that investigated PPV development and life cycles, the triangular association between viruses, parasites, and hosts, and the effects of viruses on protozoan pathogenicity. This study highlights that viruses can alter parasite biology, and viral infection of parasites may exacerbate the adverse effects of virus-containing parasites on hosts or reduce parasite virulence. PPVs should be considered in the prevention of parasitic epidemics and outbreaks, although their effects on the host and the complexity of the triangular association between PPVs, protozoans, and hosts remain unclear. IMPORTANCE PPVs-based regulation of parasitic protozoa can provide a theoretical basis and direction for PPD prevention and control, although PPVs and PPV regulatory mechanisms remain unclear. In this review, we investigated the differences between PPVs and the unique properties of each virus regarding virus discovery, structures, and life cycles, focused on the Trichomonas vaginalis virus, Giardia lamblia virus, Leishmania RNA virus, and the Cryptosporidium parvum virus 1. The triangular association between PPVs, parasitic protozoa, and hosts reveals the "double-edged sword" property of PPVs, which maintains a balance between parasitic protozoa and hosts in both positive and negative respects. These studies discuss the complexity of parasitic protozoa and their co-existence with hosts and suggest novel pathways for using PPVs as tools to gain a deeper understanding of protozoal infection and treatment.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Parasites , Protozoan Infections , RNA Viruses , Viruses , Animals , Humans , Protozoan Infections/parasitology
7.
Opt Express ; 30(5): 6700-6712, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299449

ABSTRACT

Magneto-optical (MO) properties of the bilayed Au/BIG and trilayered Au/BIG/Au magneto-plasmonic crystals (MPCs) were analyzed by the finite-difference time-domain method. In contrast to the low deflection angle and transmission of the smooth thin film, all the heterostructures with perforated holes in the top Au film displayed a similar trend with two strong resonant bands in Faraday rotation and transmittance in the near infrared wavelength range. The bands and electric distribution relative to the component and hole structure were revealed. The MPC with plasmonic hexagonal holes was found to own superior Faraday effects with distinctive anisotropy. The evolution of the resonant bands with the size and period of hexagonal holes, the thickness of different layers, and the incident light polarization was illustrated. The Faraday rotation of the optimized bilayed and trilayered hexagonal MPCs was improved 15.3 and 17.5 times, and the transmittance was enhanced 12.1 and 11.1 folds respectively at the resonant wavelength in comparison to the continuous Au/BIG film, indicating that the systems might find potential application in MO devices.

8.
Front Public Health ; 9: 752530, 2021.
Article in English | MEDLINE | ID: mdl-34604168

ABSTRACT

Under the context of rapid economic and social development, and growing demands for a better life, Chinese residents have been increasingly concerned with their health status and issues. In this study, the internal relations between the purchase of commercial insurance by residents and their health status are analyzed and studied with a polytomous logit model based on the data of Chinese General Social Survey (CGSS) in 2015. According to the research result, purchase of commercial insurance significantly improved the health status of residents, with an improving effect for rural residents apparently better than that among urban residents. In addition, purchase of commercial insurance can promote the health status of residents by increasing their household income. This research will provide an effective reference for the innovative development and medical reform of the commercial insurance of China in the future, which is theoretically and practically significant to the implementation of the Healthy China Strategy.


Subject(s)
Health Status , Rural Population , China , Humans , Insurance, Health , Logistic Models
9.
ACS Appl Mater Interfaces ; 13(23): 27458-27470, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34081863

ABSTRACT

Advanced thermal insulation materials with low thermal conductivity and robustness derived from regenerative resources are badly needed for building energy conservation. Among them, nanofibrillated cellulose aerogels have huge application potential in the field of thermal insulation materials, but it is still a challenge to prepare cellulose aerogels of excellent comprehensive properties in a simple way. Herein, we demonstrate a unidirectional freeze-drying strategy to develop a novel "robust-soft" anisotropic nanofibrillated cellulose aerogel (NFC-Si-T) by integrating nanofibrillated cellulose (NFC) and Si-O-Si bonding networks under the catalytic dehydration of p-toluenesulfonic acid (TsOH). The anisotropic structure endows the NFC-Si-T with high flexibility that can be easily bent or even tied with a knot, and in addition, it possesses high Young's modulus (1-3.66 MPa) that can resist the compression weight of 10,000 times of its own weight without deformation. Furthermore, the NFC-Si-T aerogels exhibit anisotropic thermal insulation performances with a low average thermal conductivity (0.028-0.049 W m-1 K-1). More importantly, the limited oxygen index of the NFC-Si-T reaches up to 42.6-51%, showing excellent flame-retardant performance. Therefore, the "robust-soft" anisotropic NFC-Si-T aerogels can be used as an advanced thermal insulation material for building thermal insulation applications.

10.
Small ; 16(48): e2006013, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33155434

ABSTRACT

Numerous studies on osmotic power generators with nanoscale pores are conducted. However, their performance output is limited because of the finite osmotic current and conductance from such tiny pores. Here, a proof-of-concept study demonstrating that the rectified mesopore (sub-micrometer-scale pore) with high surface charges can be applied in osmotic energy conversion is reported. A single conical mesopore of ≈405 nm in tip diameter, which can reach an osmotic conductance as high as 0.284 µS (corresponding to a current of 27.5 nA and voltage of 97 mV), enables a record-high power of 667 pW under a 1000-fold salinity gradient, more than doubling all of the state-of-the-art single-pore osmotic power generators reported. This work extends the knowledge of osmotic energy with solid-state pores from nanoscale to mesoscale and opens up a promising avenue toward ultrahigh performance osmotic power.

11.
ACS Appl Mater Interfaces ; 12(30): 33621-33630, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32603080

ABSTRACT

Electrochemical conversion reaction based electrodes offer a high sodium storage capacity in rechargeable batteries by utilizing the variable valence states of transition metals. Thus, transition metal chalcogenides (TMCs) as such materials have been intensively investigated in recent years to explore the possibilities of practical application in rechargeable sodium-ion batteries; however, it is hindered by poor rate performance and a high-cost preparation method. In addition, some issues in regards to conversion reactions remain poorly understood, including incomplete reversible reaction processes, polarization, and hysteresis. Herein, a novel cagelike CoSe2@N-doped carbon aerogels hybrid composite was designed and prepared by a facile and high-efficiency sol-gel technology. Benefiting from the surface engineering optimization, high charge transfer, and low-energy diffusion barrier, the CoSe2@N-doped carbon aerogels exhibit a high pseudocapacitive property. Most importantly, the CoSe2 anode has been carefully investigated at different discharge/charge states by X-ray absorption near edge spectroscopy technologies and density functional theory (DFT) simulations, which deeply reveal the capacity fading mechanism and phase transition behavior.

12.
ACS Appl Mater Interfaces ; 12(29): 32726-32735, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32589008

ABSTRACT

Lithium-sulfur batteries have been considered as one of the most promising energy storage devices due to their high theoretical capacity and low cost. They go through complicated multistep electrochemical reactions from solid (sulfur)-liquid (soluble polysulfide) to liquid (soluble polysulfide)-solid (Li2S) during the discharge process. Actually, during this process, the transition from liquid phase (Li2S4) to solid phase (Li2S) at 2.1 V plateau is a difficult step with sluggish kinetics, thus leading to low sulfur utilization and discharge capacity. To promote the transition processes and enhance the sulfur utilization, CoS2@multichannel carbon nanofiber composites (CoS2@MCNFs) serving as sulfur host were successfully synthesized. Herein, CoS2 catalysts are proven to be beneficial not only for enhancing the phase-transition kinetics but also for adsorbing soluble polysulfide. Besides, unlike other carbon materials, MCNFs have plenty of hollow channels and thus enhance sulfur loading and conductivity. Accordingly, the discharge capacity increases 32% more than that of electrode without CoS2. And a very low capacity fade rate of 0.03% per cycle (over 450 cycles) is obtained at a 0.5C rate. This work has opened up new ideas for enhancing sulfur utilization for high sulfur-loading electrode.

13.
Sci Total Environ ; 635: 452-469, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29677671

ABSTRACT

This paper provides an overview of the interrelationships between tourism and sustainability from a cross-disciplinary perspective. The current challenges and barriers in the tourism sustainability, such as high energy use, extensive water consumption and habitat destruction, are first reviewed. Then the key cross-disciplinary elements in sustainable tourism, including green energy, green transportation, green buildings, green infrastructure, green agriculture and smart technologies, are discussed. To overcome the challenges and barriers, a few implementation strategies on achieving sustainable tourism from the aspects of policy/regulation, institution, finance, technology and culture are proposed, along with the framework and details of a key performance indicator system. Finally, prospects of the potential for tourism to contribute to the transformative changes, e.g., a green economy system, are illustrated. This paper shine a light on issues of importance within sustainable tourism and encourage researchers from different disciplines in investigating the inter-relationships among community/culture, environment/ecology, and energy/water/food more broadly.

14.
Chem Commun (Camb) ; 51(60): 12118-21, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26125069

ABSTRACT

Graphite with a large inter-planar distance (0.357 nm) was obtained from pig bone. It delivered an improving specific capacity which increased continuously to 538 mA h g(-1) at 1 A g(-1) after 1000 cycles. With microscopic characterization, it has been found that the pig-bone-based graphite was exfoliated to graphene during the charge-discharge process.


Subject(s)
Electric Power Supplies , Graphite/chemistry , Lithium/chemistry , Animals , Bone and Bones/chemistry , Electrodes , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...