Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Anal Chem ; 96(24): 9849-9858, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836774

ABSTRACT

The scarcity and dynamic nature of phosphotyrosine (pTyr)-modified proteins pose a challenge for researching protein complexes with pTyr modification, which are assembled through multiple protein-protein interactions. We developed an integrated complex-centric platform for large-scale quantitative profiling of pTyr signaling complexes based on cofractionation/mass spectrometry (CoFrac-MS) and a complex-centric algorithm. We initially constructed a trifunctional probe based on pTyr superbinder (SH2-S) for specifically binding and isolation of intact pTyr protein complexes. Then, the CoFrac-MS strategy was employed for the identification of pTyr protein complexes by integrating ion exchange chromatography in conjunction with data independent acquisition mass spectrometry. Furthermore, we developed a novel complex-centric algorithm for quantifying protein complexes based on the protein complex elution curve. Utilizing this algorithm, we effectively quantified 216 putative protein complexes. We further screened 21 regulated pTyr protein complexes related to the epidermal growth factor signal. Our study engenders a comprehensive framework for the intricate examination of pTyr protein complexes and presents, for the foremost occasion, a quantitative landscape delineating the composition of pTyr protein complexes in HeLa cells.


Subject(s)
Algorithms , Mass Spectrometry , Phosphotyrosine , Signal Transduction , Phosphotyrosine/metabolism , Phosphotyrosine/analysis , Phosphotyrosine/chemistry , Humans , HeLa Cells , Chromatography, Ion Exchange/methods
2.
J Proteome Res ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833655

ABSTRACT

Global profiling of single-cell proteomes can reveal cellular heterogeneity, thus benefiting precision medicine. However, current mass spectrometry (MS)-based single-cell proteomic sample processing still faces technical challenges associated with processing efficiency and protein recovery. Herein, we present an innovative sample processing platform based on a picoliter single-cell reactor (picoSCR) for single-cell proteome profiling, which involves in situ protein immobilization and sample transfer. PicoSCR helped minimize surface adsorptive losses by downscaling the processing volume to 400 pL with a contact area of less than 0.4 mm2. Besides, picoSCR reached highly efficient cell lysis and digestion within 30 min, benefiting from optimal reagent and high reactant concentrations. Using the picoSCR-nanoLC-MS system, over 1400 proteins were identified from an individual HeLa cell using data-dependent acquisition mode. Proteins with copy number below 1000 were identified, demonstrating this system with a detection limit of 1.7 zmol. Furthermore, we profiled the proteome of circulating tumor cells (CTCs). Data are available via ProteomeXchange with the identifier PXD051468. Proteins associated with epithelial-mesenchymal transition and neutrophil extracellular traps formation (which are both related to tumor metastasis) were observed in all CTCs. The cellular heterogeneity was revealed by differences in signaling pathways within individual cells. These results highlighted the potential of the picoSCR platform to help discover new biomarkers and explore differences in biological processes between cells.

3.
ACS Appl Mater Interfaces ; 16(23): 29634-29644, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38822821

ABSTRACT

Efficient protection and precise delivery of biomolecules are of critical importance in the intervention and therapy of various diseases. Although diverse specific marker-functionalized drug carriers have been developed rapidly, current approaches still encounter substantial challenges, including strong immunogenicity, limited target availability, and potential side effects. Herein, we developed a biomimetic exosome-sheathed magnetic mesoporous anchor modified with glucose oxidase (MNPs@mSiO2-GOx@EM) to address these challenges and achieve synergistic targeting and starving of tumor cells. The MNPs@mSiO2-GOx@EM anchor integrated the unique characteristics of different components. An external decoration of exosome membrane (EM) with high biocompatibility contributed to increased phagocytosis prevention, prolonged circulation, and enhanced recognition and cellular uptake of loaded particles. An internal coated magnetic mesoporous core with rapid responsiveness by the magnetic field guidance and large surface area facilitated the enrichment of nanoparticles at the specific site and provided enough space for modification of glucose oxidase (GOx). The inclusion of GOx in the middle layer accelerated the energy-depletion process within cells, ultimately leading to the starvation and death of target cells with minimal side effects. With these merits, in vitro study manifested that our nanoplatform not only demonstrated an excellent targeting capability of 94.37% ± 1.3% toward homotypic cells but also revealed a remarkably high catalytical ability and cytotoxicity on tumor cells. Assisted by the magnetic guidance, the utilization of our anchor obviously inhibits the tumor growth in vivo. Together, our study is promising to serve as a versatile method for the highly efficient delivery of various target biomolecules to intended locations due to the fungibility of exosome membranes and provide a potential route for the recognition and starvation of tumor cells.


Subject(s)
Biomimetic Materials , Exosomes , Glucose Oxidase , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Exosomes/metabolism , Exosomes/chemistry , Animals , Humans , Mice , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Porosity , Magnetite Nanoparticles/chemistry , Cell Line, Tumor , Silicon Dioxide/chemistry , Drug Carriers/chemistry , Mice, Inbred BALB C
4.
ACS Appl Mater Interfaces ; 16(23): 30462-30470, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38830131

ABSTRACT

Garnet-type Li6.75La3Zr1.75Ta0.25O12 (LLZTO) is a promising solid-state electrolyte (SSE) because of its fast ionic conduction and notable chemical/electrochemical stability toward the lithium (Li) metal. However, poor interface wettability and large interface resistance between LLZTO and Li anode greatly restrict its practical applications. In this work, we develop an in situ chemical conversion strategy to construct a highly conductive Li2S@C layer on the surface of LLZTO, enabling improved interfacial wettability between LLZTO and the Li anode. The Li/Li2S@C-LLZTO-Li2S@C/Li symmetric cell has a low interface impedance of 78.5 Ω cm2, much lower than the 970 Ω cm2 of a Li/LLZTO/Li cell. Moreover, the Li/Li2S@C-LLZTO-Li2S@C/Li cell exhibits a high critical current density of 1.4 mA cm-2 and an ultralong stability of 3000 h at 0.1 mA cm-2. When used in a LiFePO4 battery, the Li/Li2S@C-LLZTO/LiFePO4 battery exhibits a high initial discharge capacity of 150.8 mA h g-1 at 0.2 C without lithium storage capacity attenuation during 200 cycles. This work provides a novel and feasible strategy to address interface issues of SSEs and achieve lithium-dendrite-free solid-state batteries.

5.
Adv Mater ; : e2404213, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695334

ABSTRACT

Developing efficient and robust electrocatalysts toward the oxygen evolution reaction (OER) is critical for proton exchange membrane water electrolysis (PEMWE). RuO2 possesses intrinsically high OER activity, but the concurrent electrochemical dissolution leads to rapid deactivation. Here a unique RuO2 catalyst containing metallic Ru─Ru interactions (m-RuO2) is reported, which maintains stability in practical PEMWE for 100 h at 60 °C and 1 A cm-2. Experimental and theoretical investigations suggest that the presence of Ru─Ru interactions significantly increases the energy barrier for the formation of RuO2(OH)2, which is a key intermediate for Ru dissolution, and hence substantially mitigates the electrochemical corrosion of m-RuO2. Meanwhile, the Ru4d band center downshifts, accordingly, ensuring the high OER activity, and the participation of lattice oxygen in the OER is also suppressed at the Ru─Ru sites, further contributing to the enhanced durability. Interestingly, such enhanced stability is also dependent on the size of metallic Ru─Ru cluster, where the energy barrier is further increased for Ru3, but is decreased for Ru5. These results highlight the significance of local coordination structure modulation on the electrochemical stability of RuO2 and open a feasible avenue toward the development of robust OER electrocatalysts for high-performance PEMWE.

6.
Angew Chem Int Ed Engl ; : e202406728, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770895

ABSTRACT

Strong metal-support interaction (SMSI) is crucial to modulating the nature of metal species, yet the SMSI behaviors of sub-nanometer metal clusters remain unknown due to the difficulties in constructing SMSI at cluster scale. Herein, we achieve the successful construction of the SMSI between Pt clusters and amorphous TiO2 nanosheets by vacuum annealing, which required a relatively low temperature that avoids the aggregation of small clusters. In situ scanning transmission electron microscopy observation is employed to explore the SMSI behaviors, and the results reveal the dynamic rearrangement of Pt atoms upon annealing for the first time. The originally disordered Pt atoms become ordered as the crystallizing of the amorphous TiO2 support, forming an epitaxial interface between Pt and TiO2. Such SMSI state can remain stable in oxidation environment even at 400 °C. Further investigations prove that the electron transfer from TiO2 to Pt occupies the Pt 5d orbitals, which is responsible for the disappeared CO adsorption ability of Pt/TiO2 after forming SMSI. This work not only opens a new avenue for constructing SMSI at cluster scale but also provides in-depth understanding on the unique SMSI behavior, which would stimulate the development of supported metal clusters for catalysis applications.

7.
ChemSusChem ; : e202400166, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772858

ABSTRACT

Amino acids are a class of compounds with wide-ranging applications. The synthesis of amino acids from biomass-derived α-keto acids and ammonia is a sustainable way but the unstable primary imine intermediates (R-C=NH) easily form oligomers. Herein, targeting this problem, alkaline modified mesoporous silica was employed as a support for ruthenium (Ru/M-MCM-41), which could be used as a bifunctional catalyst in the reductive amination of α-keto acids to synthesize α-amino acids. The incorporation of Sr improved the dispersion of Ru nanoparticles and enhanced metal-support interactions via electron transfer from Sr to Ru, and the active Ru sites could efficiently hydrogenate primary imine intermediates to α-amino acids, thus prohibiting the formation of oligomers. Moreover, the Sr-dopant introduces base sites that could catalyze the hydrolysis of oligomers back to primary imine intermediates and finally hydrogenated to α-amino acids. As a result, >99% yield of glycine was achieved from glyoxylic acid over Ru/Sr-MCM-41, which is nearly three times that achieved over Ru/MCM-41 (32.2%).

8.
Small ; : e2401645, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764309

ABSTRACT

Anionic redox chemistry enables extraordinary capacity for Li- and Mn-rich layered oxides (LMROs) cathodes. Unfortunately, irreversible surface oxygen evolution evokes the pernicious phase transition, structural deterioration, and severe electrode-electrolyte interface side reaction with element dissolution, resulting in fast capacity and voltage fading of LMROs during cycling and hindering its commercialization. Herein, a redox couple strategy is proposed by utilizing copper phthalocyanine (CuPc) to address the irreversibility of anionic redox. The Cu-N synergistic effect of CuPc could not only inhibit surface oxygen evolution by reducing the peroxide ion O2 2- back to lattice oxygen O2-, but also enhance the reaction activity and reversibility of anionic redox in bulk to achieve a higher capacity and cycling stability. Moreover, the CuPc strategy suppresses the interface side reaction and induces the forming of a uniform and robust LiF-rich cathode electrolyte, interphase (CEI) to significantly eliminate transition metal dissolution. As a result, the CuPc-enhanced LMRO cathode shows superb cycling performance with a capacity retention of 95.0% after 500 long-term cycles. This study sheds light on the great effect of N-based redox couple to regulate anionic redox behavior and promote the development of high energy density and high stability LMROs cathode.

9.
Reprod Biol Endocrinol ; 22(1): 37, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576003

ABSTRACT

Inadequate endometrial receptivity often results in embryo implantation failure and miscarriage. Human chorionic gonadotropin (hCG) is a key signaling molecule secreted during early embryonic development, which regulates embryonic maternal interface signaling and promotes embryo implantation. This study aimed to examine the impact of hCG on endometrial receptivity and its underlying mechanisms. An exploratory study was designed, and endometrial samples were obtained from women diagnosed with simple tubal infertility or male factor infertile (n = 12) and recurrent implantation failure (RIF, n = 10). Using reverse transcription-quantitative PCR and western blotting, luteinizing hormone (LH)/hCG receptor (LHCGR) levels and autophagy were detected in the endometrial tissues. Subsequently, primary endometrial stromal cells (ESCs) were isolated from these control groups and treated with hCG to examine the presence of LHCGR and markers of endometrial receptivity (HOXA10, ITGB3, FOXO1, LIF, and L-selectin ligand) and autophagy-related factors (Beclin1, LC3, and P62). The findings revealed that the expressions of receptivity factors, LHCGR, and LC3 were reduced in the endometrial tissues of women with RIF compared with the control group, whereas the expression of P62 was elevated. The administration of hCG to ESCs specifically activated LHCGR, stimulating an increase in the endometrial production of HOXA10, ITGB3, FOXO1, LIF and L-selectin ligands. Furthermore, when ESCs were exposed to 0.1 IU/mL hCG for 72 h, the autophagy factors Beclin1 and LC3 increased within the cells and P62 decreased. Moreover, the apoptotic factor Bax increased and Bcl-2 declined. However, when small interfering RNA was used to knock down LHCGR, hCG was less capable of controlling endometrial receptivity and autophagy molecules in ESCs. In addition, hCG stimulation enhanced the phosphorylation of ERK1/2 and mTOR proteins. These results suggest that women with RIF exhibit lower levels of LHCGR and compromised autophagy function in their endometrial tissues. Thus, hCG/LHCGR could potentially improve endometrial receptivity by modulating autophagy and apoptosis.


Subject(s)
Endometrium , L-Selectin , Pregnancy , Humans , Male , Female , Beclin-1 , L-Selectin/metabolism , Endometrium/metabolism , Chorionic Gonadotropin/pharmacology , Chorionic Gonadotropin/metabolism , Embryo Implantation/physiology , Autophagy , Stromal Cells/metabolism , Apoptosis
10.
Small ; : e2400965, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506595

ABSTRACT

Nanostructured metal hydrides with unique morphology and improved hydrogen storage properties have attracted intense interests. However, the study of the growth process of highly active borohydrides remains challenging. Herein, for the first time the synthesis of LiBH4 nanorods through a hydrogen-assisted one-pot solvothermal reaction is reported. Reaction of n-butyl lithium with triethylamine borane in n-hexane under 50 bar of H2 at 40-100 °C gives rise to the formation of the [100]-oriented LiBH4 nanorods with 500-800 nm in diameter, whose growth is driven by orientated attachment and ligand adsorption. The unique morphology enables the LiBH4 nanorods to release hydrogen from ≈184 °C, 94 °C lower than the commercial sample (≈278 °C). Hydrogen release amounts to 13 wt% within 40 min at 450 °C with a stable cyclability, remarkably superior to the commercial LiBH4 (≈9.1 wt%). More importantly, up to 180 °C reduction in the onset temperature of hydrogenation is successfully attained by the nanorod sample with respect to the commercial counterpart. The LiBH4 nanorods show no foaming during dehydrogenation, which improves the hydrogen cycling performance. The new approach will shed light on the preparation of nanostructured metal borohydrides as advanced functional materials.

11.
Mol Biol Rep ; 51(1): 359, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400863

ABSTRACT

The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase crucial for cellular differentiation, proliferation, and autophagy. It shows a complex role in the endometrium, influencing both normal and pathogenic conditions. mTOR promotes the growth and maturation of endometrial cells, enhancing endometrial receptivity and decidualization. However, it also contributes to the development of endometriosis (EMs) and endometrial cancer (EC), thus emerging as a therapeutic target for these conditions. In this review, we summarize recent research progress on the mTOR signalling pathway in the endometrium. This provides insights into female endometrial structure and function and guides the prevention and treatment of related diseases.


Subject(s)
Endometriosis , Sirolimus , Animals , Female , Humans , Sirolimus/therapeutic use , Endometrium/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Mammals/metabolism , Endometriosis/metabolism
12.
Anal Chem ; 96(6): 2727-2736, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38300748

ABSTRACT

Exosomes, a growing focus for liquid biopsies, contain diverse molecular cargos. In particular, exosome metabolites with valuable information have exhibited great potential for improving the efficiency of liquid biopsies for addressing complex medical conditions. In this work, we design the directional growth of Ti-metal-organic frameworks on polar-functionalized magnetic particles. This design facilitates the rapid synergistic capture of exosomes with the assistance of an external magnetic field and additionally synergistically enhances the ionization of their metabolites during mass spectrometry detection. Benefiting from this dual synergistic effect, we identified three high-performance exosome metabolites through the differential comparison of a large number of serum samples from individuals with Alzheimer's disease (AD) and normal cognition. Notably, the accuracy of AD identification ranges from 93.18 to 100% using a single exosome metabolite and reaches a flawless 100% with three metabolites. These findings emphasize the transformative potential of this work to enhance the precision and reliability of AD diagnosis, ushering in a new era of improved diagnostic accuracy.


Subject(s)
Alzheimer Disease , Exosomes , Metal-Organic Frameworks , Humans , Alzheimer Disease/pathology , Metal-Organic Frameworks/metabolism , Exosomes/chemistry , Reproducibility of Results , Titanium/analysis
13.
ACS Nano ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334290

ABSTRACT

LiBH4 is one of the most promising candidates for use in all-solid-state lithium batteries. However, the main challenges of LiBH4 are the poor Li-ion conductivity at room temperature, excessive dendrite formation, and the narrow voltage window, which hamper practical application. Herein, we fabricate a flexible polymeric electronic shielding layer on the particle surfaces of LiBH4. The electronic conductivity of the primary LiBH4 is reduced by 2 orders of magnitude, to 1.15 × 10-9 S cm-1 at 25 °C, due to the high electron affinity of the electronic shielding layer; this localizes the electrons around the BH4- anions, which eliminates electronic leakage from the anionic framework and leads to a 68-fold higher critical electrical bias for dendrite growth on the particle surfaces. Contrary to the previously reported work, the shielding layer also ensures fast Li-ion conduction due to the fast-rotational dynamics of the BH4- species and the high Li-ion (carrier) concentration on the particle surfaces. In addition, the flexibility of the layer guarantees its structural integrity during Li plating and stripping. Therefore, our LiBH4-based solid-state electrolyte exhibits a high critical current density (11.43 mA cm-2) and long cycling stability of 5000 h (5.70 mA cm-2) at 25 °C. More importantly, the electrolyte had a wide operational temperature window (-30-150 °C). We believe that our findings provide a perspective with which to avoid dendrite formation in hydride solid-state electrolytes and provide high-performance all-solid-state lithium batteries.

14.
Anal Bioanal Chem ; 416(7): 1589-1597, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38289356

ABSTRACT

Uric acid (UA) is an important biomarker, as a high concentration in blood can lead to gout and further renal syndrome. Although several point-of-care testing (POCT) devices have been reported to detect UA, there are some limitations such as the requirement for uricase and the complicated pretreatment of serum/plasma samples, which restricts their use at home or in undeveloped areas. In this work, we developed an approach by applying Zn2+ to precipitate proteins and cells in whole blood to avoid interference with the chromogenic reaction. We used carboxymethylcellulose (CMC) to immobilize tetramethylbenzidine (TMB) on a nitrocellulose membrane for colorimetric detection. Using the oxidization properties of H2O2, which turns TMB into oxidized tetramethylbenzidine (TMBox) in the presence of catalyst gold nanoparticles (AuNPs), we successfully constructed an enzyme-free paper-based POCT device using the reduction reaction of UA and TMBox for simple, speedy, and cheap colorimetric detection of UA, achieving a detection time of 8 min, a linear range of 0-150 µg/mL, and an LOD of 25.79 µg/mL. The UA concentration in whole blood samples was further measured and correlated well with the clinical value (R2 = 0.8212). Thus, the proposed assay has the potential for POCT diagnosis, monitoring, and prognosis of diseases related to UA.


Subject(s)
Metal Nanoparticles , Uric Acid , Gold , Colorimetry , Hydrogen Peroxide , Zinc
15.
Anal Chim Acta ; 1287: 342109, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38182386

ABSTRACT

BACKGROUND: Tumor-derived exosomes (TEXs) play an important role in the development process of cancer, which can transport a large number of carcinogenic molecules to normal cells, and subsequently promote tumor metastasis. However, TEXs that were utilized in most of previous researches were obtained from the cell medium of tumor cell lines, which cannot reflect the physiological state of primary cells in vivo. Isolation of native TEXs from human plasma with intact function is contributed to exploring the interaction between TEXs and recipient cells for understanding their true biological functions. RESULTS: We developed a strategy that involves both capture and release processes to obtain native TEXs from plasma of cancer patients. An MoS2-based immunomagnetic probe (Fe3O4@MoS2-Au-Aptamer, named as FMAA) with the advantages of high surface area, magnetic response and abundant affinity sites was designed and synthesized to capture TEXs through recognizing high-expression tumor-associated antigens of EpCAM. With the assistance of complementary sequences of EpCAM, TEXs were released with non-destruction and no residual labels. According to NTA analysis, 107-108 TEXs were recovered from per mL plasma of breast cancer patients. The interaction between native TEXs and normal epithelial cells confirms TEXs could induce significant activation of autophagy of recipient cells with co-culture for 12 h. Proteomics analysis demonstrated a total of 637 proteins inside epithelial cells had dynamic expression with the stimulation of TEXs and 5 proteins in the pathway of autophagy had elevated expression level. SIGNIFICANCE: This work not only obtains native TEXs from human plasma with non-destruction and no residual labels, but also explores the interaction between TEXs and recipient cells for understanding their true biological functions, which will accelerate the application of TEXs in the field of biomarkers and therapeutic drugs.


Subject(s)
Breast Neoplasms , Exosomes , Humans , Female , Epithelial Cell Adhesion Molecule , Molybdenum , Carcinogens
16.
Anal Chem ; 95(35): 13113-13122, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37609888

ABSTRACT

From metabolic waste to biological mediators, exosomes have emerged as the key player in a variety of pathological processes, particularly in oncogenesis. The exosome-mediated communication network involves nearly every step of cancer progression, promoting the proliferation and immune escape of cancer cells. Therefore, the removal of cancer-derived exosomes has profound clinical significance. Current methods for exosome separation and enrichment are either for large-scale samples or require complex pretreatment processes, lacking effective methods for trace-volume exosome capture in situ. Herein, we have developed an in situ exosome capturing and counting device based on the antibody-functionalized capillary. Specific antibodies targeting exosome biomarkers were immobilized to the inner wall of the capillary via biotin-streptavidin interaction for direct cancer exosome capturing. Subsequent exosome staining enabled imaging and enumeration. Acceptable linearity and reproducibility were achieved with our device, with the capturing and detective range between 3.3 × 104 and 3.3 × 108 particles, surpassing the nanoparticle tracking analysis by 2 orders of magnitude while requiring merely 30 µL sample. We demonstrated that MCF-7-derived exosomes induced epithelial-mesenchymal transition of epithelial cells MCF-10A, and our method was able to completely or partially reverse the transition by complete depletion or specific depletion of cancer exosomes without any preprocessing. Moreover, both whole exosomes and cancer-specific exosomes alone from mimic blood samples were successfully captured and counted, without obvious non-specific adsorption. In all, our approach realized the in situ depletion and number-counting of cancer-derived exosomes directly from the complex humoral environment, having the potential to provide a comprehensive tumor therapeutic and prognosis evaluation tool by targeted hemodialysis and counting of tumor-derived exosomes.


Subject(s)
Exosomes , Neoplasms , Humans , Reproducibility of Results , Carcinogenesis , Adsorption , Antibodies
17.
ACS Appl Mater Interfaces ; 15(34): 40558-40568, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37581606

ABSTRACT

High thermal stability and sluggish absorption/desorption kinetics are still important limitations for using magnesium hydride (MgH2) as a solid-state hydrogen storage medium. One of the most effective solutions in improving hydrogen storage properties of MgH2 is to introduce a suitable catalyst. Herein, a novel nanoparticulate ZrNi with 10-60 nm in size was successfully prepared by co-precipitation followed by a molten-salt reduction process. The 7 wt % nano-ZrNi-catalyzed MgH2 composite desorbs 6.1 wt % hydrogen starting from ∼178 °C after activation, lowered by 99 °C relative to the pristine MgH2 (∼277 °C). The dehydrided sample rapidly absorbs ∼5.5 wt % H2 when operating at 150 °C for 8 min. The remarkably improved hydrogen storage properties are reasonably ascribed to the in situ formation of ZrH2, ZrNi2, and Mg2NiH4 caused by the disproportionation reaction of nano-ZrNi during the first de-/hydrogenation cycle. These catalytic active species are uniformly dispersed in the MgH2 matrix, thus creating a multielement, multiphase, and multivalent environment, which not only largely favors the breaking and rebonding of H-H bonds and the transfer of electrons between H- and Mg2+ but also provides multiple hydrogen diffusion channels. These findings are of particularly scientific importance for the design and preparation of highly active catalysts for hydrogen storage in light-metal hydrides.

18.
Anal Bioanal Chem ; 415(26): 6411-6420, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37644324

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease which leads to the formation of immune complex deposits in multiple organs and has heterogeneous clinical manifestations. Currently, exosomes for liquid biopsy have been applied in diagnosis and monitoring of diseases, whereas SLE discrimination based on exosomes at the metabolic level is rarely reported. Herein, we constructed a protocol for metabolomic study of urinary exosomes from SLE patients and healthy controls (HCs) with high efficiency and throughput. Exosomes were first obtained by high-performance liquid size-exclusion chromatography (HPL-SEC), and then metabolic fingerprints of urinary exosomes were extracted by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with high throughput and high efficency. With the statistical analysis by orthogonal partial least-squares discriminant analysis (OPLS-DA) model, SLE patients were efficiently distinguished from HCs, the area under the curve (AUC) of the receiver characteristic curve (ROC) was 1.00, and the accuracy of the unsupervised clustering heatmap was 90.32%. In addition, potential biomarkers and related metabolic pathways were analyzed. This method, with the characteristics of high throughput, high efficiency, and high accuracy, will provide the broad prospect of exosome-driven precision medicine and large-scale screening in clinical applications.

19.
Adv Mater ; 35(45): e2304285, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37487246

ABSTRACT

LiBH4 is a promising solid-state electrolyte (SE) due to its thermodynamic stability to Li. However, poor Li-ion conductivities at room temperature, low oxidative stabilities, and severe dendrite growth hamper its application. In this work, a partial dehydrogenation strategy is adopted to in situ generate an electronic blocking layer dispersed of LiH, addressing the above three issues simultaneously. The electrically insulated LiH reduces the electronic conductivity by two orders of magnitude, leading to a 32.0-times higher critical electrical bias for dendrite growth on the particle surfaces than that of the counterpart. Additionally, this layer not only promotes the Li-ion conductance by stimulating coordinated rotations of BH4 - and B12 H12 2- , contributing to a Li-ion conductivity of 1.38 × 10-3 S cm-1 at 25 °C, but also greatly enhances oxidation stability by localizing the electron density on BH4 - , extending its voltage window to 6.0 V. Consequently, this electrolyte exhibits an unprecedented critical current density (CCD) of 15.12 mA cm-2 at 25 °C, long-term Li plating and stripping stability for 2700 h, and a wide temperature window for dendrite inhibition from -30 to 150 °C. Its Li-LiCoO2 cell displays high reversibility within 3.0-5.0 V. It is believed that this work provides a clear direction for solid-state hydride electrolytes.

20.
Adv Sci (Weinh) ; 10(25): e2207627, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37407507

ABSTRACT

Garnet-type oxide Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZTO) features superior ionic conductivity and good stability toward lithium (Li) metal, but requires high-temperature sintering (≈1200 °C) that induces high fabrication cost, poor mechanical processability, and high interface resistance. Here, a novel high-performance tricomponent composite solid electrolyte (CSE) comprising LLZTO-4LiBH4 /xLi3 BN2 H8 is reported, which is prepared by ball milling the LLZTO-4LiBH4  mixture followed by hand milling with Li3 BN2 H8 . Green pellets fabricated by heating the cold-pressed CSE powders at 120 °C offer ultrafast room-temperature ionic conductivity (≈1.73 × 10-3  S cm-1  at 30 °C) and ultrahigh Li-ion transference number (≈0.9999), which enable the Li|Li symmetrical cells to cycle over 1600 h at 30 °C with only 30 mV of overpotential. Moreover, the Li|CSE|TiS2  full cells deliver 201 mAh g-1  of capacity with long cyclability. These outstanding performances are due to the low open porosity in the electrolyte pellets as well as the high intrinsic ionic conductivity and easy deformability of Li3 BN2 H8 .

SELECTION OF CITATIONS
SEARCH DETAIL
...