Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Acta Pharm Sin B ; 14(4): 1878-1891, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572115

ABSTRACT

Crocus sativus (saffron) is a globally autumn-flowering plant, and its stigmas are the most expensive spice and valuable herb medicine. Crocus specialized metabolites, crocins, are biosynthesized in distant species, Gardenia (eudicot) and Crocus (monocot), and the evolution of crocin biosynthesis remains poorly understood. With the chromosome-level Crocus genome assembly, we revealed that two rounds of lineage-specific whole genome triplication occurred, contributing important roles in the production of carotenoids and apocarotenoids. According to the kingdom-wide identification, phylogenetic analysis, and functional assays of carotenoid cleavage dioxygenases (CCDs), we deduced that the duplication, site positive selection, and neofunctionalization of Crocus-specific CCD2 from CCD1 members are responsible for the crocin biosynthesis. In addition, site mutation of CsCCD2 revealed the key amino acids, including I143, L146, R161, E181, T259, and S292 related to the catalytic activity of zeaxanthin cleavage. Our study provides important insights into the origin and evolution of plant specialized metabolites, which are derived by duplication events of biosynthetic genes.

2.
J Agric Food Chem ; 72(14): 8269-8283, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557049

ABSTRACT

Many species of the Urticaceae family are important cultivated fiber plants that are known for their economic and industrial values. However, their secondary metabolite profiles and associated biosynthetic mechanisms have not been well-studied. Using Laportea bulbifera as a model, we conducted widely targeted metabolomics, which revealed 523 secondary metabolites, including a unique accumulation of flavonol glycosides in bulblet. Through full-length transcriptomic and RNA-seq analyses, the related genes in the flavonoid biosynthesis pathway were identified. Finally, weighted gene correlation network analysis and functional characterization revealed four LbUGTs, including LbUGT78AE1, LbUGT72CT1, LbUGT71BX1, and LbUGT71BX2, can catalyze the glycosylation of flavonol aglycones (kaempferol, myricetin, gossypetin, and quercetagetin) using UDP-Gal and UDP-Glu as the sugar donors. LbUGT78AE1 and LbUGT72CT1 showed substrate promiscuity, whereas LbUGT71BX1 and LbUGT71BX2 exhibited different substrate and sugar donor selectivity. These results provide a genetic resource for studying Laportea in the Urticaceae family, as well as key enzymes responsible for the metabolism of valuable flavonoid glycosides.


Subject(s)
Glycosides , Urticaceae , Glycosides/chemistry , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Flavonoids , Flavonols , Plants/metabolism , Uridine Diphosphate , Gene Expression Profiling , Urticaceae/metabolism , Sugars
3.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1260-1265, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621973

ABSTRACT

A variety of compounds in Artemisia annua were simultaneously determined to evaluate the quality of A. annua from multiple perspectives. A method based on ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QQQ-MS/MS) was established for the simultaneous determination of seven compounds: amorpha-4,11-diene, artemisinic aldehyde, dihydroartemisinic acid, artemisinic acid, artemisinin B, artemisitene, and artemisinin, in A. annua. The content of the seven compounds in different tissues(roots, stems, leaves, and lateral branches) of A. annua were compared. The roots, stems, leaves, and lateral branches of four-month-old A. annua were collected and the content of seven artemisinin-related compounds in different tissues was determined. A multi-reaction monitoring(MRM) acquisition mode of UPLC-QQQ-MS/MS was used, with a positive ion mode of atmospheric pressure chemical ion source(APCI). Chromatographic separation was achieved on an Eclipse Plus RRHD C_(18) column(2.1 mm×50 mm, 1.8 µm). The gradient elution was performed with the mobile phase consisted of formic acid(0.1%)-ammonium formate(5 mmol·L~(-1))(A) and the methanol(B) gradient program of 0-8 min, 55%-100% B, 8-11 min, 100% B, and equilibrium for 3 min, the flow rate of 0.6 mL·min~(-1), the column temperature of 40 ℃, the injection volume of 5 µL, and the detection time of 8 min. Through methodological investigation, a method based on UPLC-QQQ-MS/MS was established for the simultaneous quantitative determination of seven representative compounds involved in the biosynthesis of artemisinin. The content of artemisinin in A. annua was higher than that of artemisinin B, and the content of artemisinin and dihydroartemisinic acid were high in all the tissues of A. annua. The content of the seven compounds varied considerably in different tissues, with the highest levels in the leaves and neither artemisinene nor artemisinic aldehyde was detected in the roots. In this study, a quantitative method based on UPLC-QQQ-MS/MS for the simultaneous determination of seven representative compounds involved in the biosynthesis of artemisinin was established, which was accurate, sensitive, and highly efficient, and can be used for determining the content of artemisinin-related compounds in A. annua, breeding new varieties, and controlling the quality of Chinese medicinal materials.


Subject(s)
Artemisia annua , Artemisinins , Lactones , Artemisia annua/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Plant Breeding , Artemisinins/analysis , Aldehydes
4.
Adv Sci (Weinh) ; 11(19): e2309990, 2024 May.
Article in English | MEDLINE | ID: mdl-38477432

ABSTRACT

Menispermaceae species, as early-diverging eudicots, can synthesize valuable benzylisoquinoline alkaloids (BIAs) like bisbenzylisoquinoline alkaloids (bisBIAs) and sinomenines with a wide range of structural diversity. However, the evolutionary mechanisms responsible for their chemo-diversity are not well understood. Here, a chromosome-level genome assembly of Menispermum dauricum is presented and demonstrated the occurrence of two whole genome duplication (WGD) events that are shared by Ranunculales and specific to Menispermum, providing a model for understanding chromosomal evolution in early-diverging eudicots. The biosynthetic pathway for diverse BIAs in M. dauricum is reconstructed by analyzing the transcriptome and metabolome. Additionally, five catalytic enzymes - one norcoclaurine synthase (NCS) and four cytochrome P450 monooxygenases (CYP450s) - from M. dauricum are responsible for the formation of the skeleton, hydroxylated modification, and C-O/C-C phenol coupling of BIAs. Notably, a novel leaf-specific MdCYP80G10 enzyme that catalyzes C2'-C4a phenol coupling of (S)-reticuline into sinoacutine, the enantiomer of morphinan compounds, with predictable stereospecificity is discovered. Moreover, it is found that Menispermum-specific CYP80 gene expansion, as well as tissue-specific expression, has driven BIA diversity in Menispermaceae as compared to other Ranunculales species. This study sheds light on WGD occurrences in early-diverging eudicots and the evolution of diverse BIA biosynthesis.


Subject(s)
Benzylisoquinolines , Cytochrome P-450 Enzyme System , Menispermaceae , Benzylisoquinolines/metabolism , Benzylisoquinolines/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Menispermaceae/genetics , Menispermaceae/metabolism , Menispermaceae/chemistry , Alkaloids/metabolism , Phylogeny , Evolution, Molecular , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Front Plant Sci ; 15: 1363063, 2024.
Article in English | MEDLINE | ID: mdl-38450408

ABSTRACT

Phellodendron amurense is the essential source of bisbenzylisoquinoline alkaloids (BIAs), making it a highly valued raw material in traditional Chinese medicine. The plant's root secondary metabolism is intricately linked to the microbial communities that surround it. However, the root-associated microbiomes of P. amurense, as well as the potential correlation between its bioactive compounds and these microbiomes, remain poorly understood. Here, the metabolic profiles of root, rhizosphere, and bulk soils of P. amurense revealed the dramatic differences in the relative content of plant-specialized metabolites. A total of 31, 21, and 0 specialized metabolites in P. amurense were identified in the root, rhizosphere soil, and bulk soil, respectively, with higher content of the seven major BIAs observed in the rhizosphere compared with that in the bulk soils. The composition of the bulk and rhizosphere microbiomes was noticeably distinct from that of the endospheric microbiome. The phylum Cyanobacteria accounted for over 60% of the root endosphere communities, and the α-diversity in root was the lowest. Targeted seven BIAs, namely, berberine, palmatine, magnocurarine, phellodendrine, jatrorrhizine, tetrahydropalmatine, and magnoflorine, were significantly positively correlated with Nectriaceae and Sphingobacteriaceae. This study has illuminated the intricate interaction networks between P. amurense root-associated microorganisms and their key chemical compounds, providing the theoretical foundation for discovering biological fertilizers and laying the groundwork for cultivating high-quality medicinal plants.

6.
Comput Struct Biotechnol J ; 23: 1106-1116, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38495554

ABSTRACT

Flavonoid glycosides are widespread in plants, and are of great interest owing to their diverse biological activities and effectiveness in preventing chronic diseases. Periploca forrestii, a renowned medicinal plant of the Apocynaceae family, contains diverse flavonoid glycosides and is clinically used to treat rheumatoid arthritis and traumatic injuries. However, the mechanisms underlying the biosynthesis of these flavonoid glycosides have not yet been elucidated. In this study, we used widely targeted metabolomics and full-length transcriptome sequencing to identify flavonoid diversity and biosynthetic genes in P. forrestii. A total of 120 flavonoid glycosides, including 21 C-, 96 O-, and 3 C/O-glycosides, were identified and annotated. Based on 24,123 full-length coding sequences, 99 uridine diphosphate sugar-utilizing glycosyltransferases (UGTs) were identified and classified into 14 groups. Biochemical assays revealed that four UGTs exhibited O-glycosyltransferase activity toward apigenin and luteolin. Among them, PfUGT74B4 and PfUGT92A8 were highly promiscuous and exhibited multisite O-glycosylation or consecutive glycosylation activities toward various flavonoid aglycones. These four glycosyltransferases may significantly contribute to the diversity of flavonoid glycosides in P. forrestii. Our findings provide a valuable genetic resource for further studies on P. forrestii and insights into the metabolic engineering of bioactive flavonoid glycosides.

7.
Food Funct ; 15(5): 2343-2365, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38323507

ABSTRACT

American ginseng (Panax quinquefolius) has gained recognition as a medicinal and functional food homologous product with several pharmaceutical, nutritional, and industrial applications. However, the key regulators involved in ginsenoside biosynthesis, the spatiotemporal distribution characteristics of ginsenosides, and factors influencing ginsenosides are largely unknown, which make it challenging to enhance the quality and chemical extraction processes of the cultivated American ginseng. This review presents an overview of the pharmacological effects, biosynthesis and spatiotemporal distribution of ginsenosides, with emphasis on the impacts of biotic and abiotic factors on ginsenosides in American ginseng. Modern pharmacological studies have demonstrated that American ginseng has neuroprotective, cardioprotective, antitumor, antidiabetic, and anti-obesity effects. Additionally, most genes involved in the upregulation of ginsenoside biosynthesis have been identified, while downstream regulators (OSCs, CYP450, and UGTs) require further investigation. Futhermore, limited knowledge exists regarding the molecular mechanisms of the impact of biotic and abiotic factors on ginsenosides. Notably, the nonmedicinal parts of American ginseng, particularly its flowers, fibrous roots, and leaves, exhibit higher ginsenoside content than its main roots and account for a considerable amount of weight in the whole plant, representing promising resources for ginsenosides. Herein, the prospects of molecular breeding and metabolic engineering based on multi-omics to improve the unstable quality of cultivated American ginseng and the shortage of ginsenosides are proposed. This review highlights the gaps in the current research on American ginseng and proposes solutions to address these limitations, providing a guide for future investigations into American ginseng ginsenosides.


Subject(s)
Ginsenosides , Panax , Ginsenosides/chemistry , Flowers/metabolism , Plant Leaves/metabolism , Panax/chemistry , Plant Roots/chemistry
8.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5181-5194, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114108

ABSTRACT

Artemisia argyi is an important medicinal and economic plant in China, with the effects of warming channels, dispersing cold, and relieving pain, inflammation, and allergy. The essential oil of this plant is rich in volatile terpenoids and widely used in moxi-bustion and healthcare products, with huge market potential. The bZIP transcription factors compose a large family in plants and are involved in the regulation of plant growth and development, stress response, and biosynthesis of secondary metabolites such as terpenoids. However, little is known about the bZIPs and their roles in A. argyi. In this study, the bZIP transcription factors in the genome of A. argyi were systematically identified, and their physicochemical properties, phylogenetic relationship, conserved motifs, and promoter-binding elements were analyzed. Candidate AarbZIP genes involved in terpenoid biosynthesis were screened out. The results showed that a total of 156 AarbZIP transcription factors were identified at the genomic level, with the lengths of 99-618 aa, the molecular weights of 11.7-67.8 kDa, and the theoretical isoelectric points of 4.56-10.16. According to the classification of bZIPs in Arabidopsis thaliana, the 156 AarbZIPs were classified into 12 subfamilies, and the members in the same subfamily had similar conserved motifs. The cis-acting elements of promoters showed that AarbZIP genes were possibly involved in light and hormonal pathways. Five AarbZIP genes that may be involved in the regulation of terpenoid biosynthesis were screened out by homologous alignment and phylogenetic analysis. The qRT-PCR results showed that the expression levels of the five AarbZIP genes varied significantly in different tissues of A. argyi. Specifically, AarbZIP29 and AarbZIP55 were highly expressed in the leaves and AarbZIP81, AarbZIP130, and AarbZIP150 in the flower buds. This study lays a foundation for the functional study of bZIP genes and their regulatory roles in the terpenoid biosynthesis in A. argyi.


Subject(s)
Artemisia , Gene Expression Profiling , Phylogeny , Artemisia/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Terpenes , Gene Expression Regulation, Plant
9.
Nat Commun ; 14(1): 6470, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833361

ABSTRACT

Horse chestnut (Aesculus chinensis) is an important medicinal tree that contains various bioactive compounds, such as aescin, barrigenol-type triterpenoid saponins (BAT), and aesculin, a glycosylated coumarin. Herein, we report a 470.02 Mb genome assembly and characterize an Aesculus-specific whole-genome duplication event, which leads to the formation and duplication of two triterpenoid biosynthesis-related gene clusters (BGCs). We also show that AcOCS6, AcCYP716A278, AcCYP716A275, and AcCSL1 genes within these two BGCs along with a seed-specific expressed AcBAHD6 are responsible for the formation of aescin. Furthermore, we identify seven Aesculus-originated coumarin glycoside biosynthetic genes and achieve the de novo synthesis of aesculin in E. coli. Collinearity analysis shows that the collinear BGC segments can be traced back to early-diverging angiosperms, and the essential gene-encoding enzymes necessary for BAT biosynthesis are recruited before the splitting of Aesculus, Acer, and Xanthoceras. These findings provide insight on the evolution of gene clusters associated with medicinal tree metabolites.


Subject(s)
Aesculus , Escin , Aesculus/genetics , Esculin , Escherichia coli
10.
Int J Mol Sci ; 24(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37894770

ABSTRACT

Crocins are important natural products predominantly obtained from the stigma of saffron, and that can be utilized as a medicinal compound, spice, and colorant with significant promise in the pharmaceutical, food, and cosmetic industries. Carotenoid cleavage dioxygenase 2 (CsCCD2) is a crucial limiting enzyme that has been reported to be responsible for the cleavage of zeaxanthin in the crocin biosynthetic pathway. However, the catalytic activity of CsCCD2 on ß-carotene/lycopene remains elusive, and the soluble expression of CsCCD2 remains a big challenge. In this study, we reported the functional characteristics of CsCCD2, that can catalyze not only zeaxanthin cleavage but also ß-carotene and lycopene cleavage. The molecular basis of the divergent functionality of CsCCD2 was elucidated using bioinformatic analysis and truncation studies. The protein expression optimization results demonstrated that the use of a maltose-binding protein (MBP) tag and the optimization of the induction conditions resulted in the production of more soluble protein. Correspondingly, the catalytic efficiency of soluble CsCCD2 was higher than that of the insoluble one, and the results further validated its functional verification. This study not only broadened the substrate profile of CsCCD2, but also achieved the soluble expression of CsCCD2. It provides a firm platform for CsCCD2 crystal structure resolution and facilitates the synthesis of crocetin and crocins.


Subject(s)
Crocus , Crocus/chemistry , beta Carotene/metabolism , Lycopene/metabolism , Zeaxanthins/metabolism , Vitamin A/metabolism
11.
Hortic Res ; 10(9): uhad164, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37731862

ABSTRACT

Artemisia annua is the only known plant source of the potent antimalarial artemisinin, which occurs as the low- and high-artemisinin producing (LAP and HAP) chemotypes. Nevertheless, the different mechanisms of artemisinin producing between these two chemotypes were still not fully understood. Here, we performed a comprehensive analysis of genome resequencing, metabolome, and transcriptome data to systematically compare the difference in the LAP chemotype JL and HAP chemotype HAN. Metabolites analysis revealed that 72.18% of sesquiterpenes was highly accumulated in HAN compared to JL. Integrated omics analysis found a DBR2-Like (DBR2L) gene may be involved in artemisinin biosynthesis. DBR2L was highly homologous with DBR2, belonged to ORR3 family, and had the DBR2 activity of catalyzing artemisinic aldehyde to dihydroartemisinic aldehyde. Genome resequencing and promoter cloning revealed that complicated variations existed in DBR2L promoters among different varieties of A. annua and were clustered into three variation types. The promoter activity of diverse variant types showed obvious differences. Furthermore, the core region (-625 to 0) of the DBR2L promoter was identified and candidate transcription factors involved in DBR2L regulation were screened. Thus, the result indicates that DBR2L is another key enzyme involved in artemisinin biosynthesis. The promoter variation in DBR2L affects its expression level, and thereby may result in the different yield of artemisinin in varieties of A. annua. It provides a novel insight into the mechanism of artemisinin-producing difference in LAP and HAP chemotypes of A. annua, and will assist in a high yield of artemisinin in A. annua.

12.
Plant Physiol Biochem ; 201: 107795, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301186

ABSTRACT

Although mainly known for producing artemisinin, Artemisia annua is enriched in phenylpropanoid glucosides (PGs) with significant bioactivities. However, the biosynthesis of A. annua PGs is insufficiently investigated. Different A. annua ecotypes from distinct growing environments accumulate varying amounts of metabolites, including artemisinin and PGs such as scopolin. UDP-glucose:phenylpropanoid glucosyltransferases (UGTs) transfers glucose from UDP-glucose in PG biosynthesis. Here, we found that the low-artemisinin ecotype GS produces a higher amount of scopolin, compared to the high-artemisinin ecotype HN. By combining transcriptome and proteome analyses, we selected 28 candidate AaUGTs from 177 annotated AaUGTs. Using AlphaFold structural prediction and molecular docking, we determined the binding affinities of 16 AaUGTs. Seven of the AaUGTs enzymatically glycosylated phenylpropanoids. AaUGT25 converted scopoletin to scopolin and esculetin to esculin. The lack of accumulation of esculin in the leaf and the high catalytic efficiency of AaUGT25 on esculetin suggest that esculetin is methylated to scopoletin, the precursor of scopolin. We also discovered that AaOMT1, a previously uncharacterized O-methyltransferase, converts esculetin to scopoletin, suggesting an alternative route for producing scopoletin, which contributes to the high-level accumulation of scopolin in A. annua leaves. AaUGT1 and AaUGT25 responded to induction of stress-related phytohormones, implying the involvement of PGs in stress responses.


Subject(s)
Artemisia annua , Artemisinins , Artemisia annua/metabolism , Scopoletin/chemistry , Scopoletin/metabolism , Scopoletin/pharmacology , Esculin/metabolism , Multiomics , Molecular Docking Simulation , Artemisinins/metabolism , Glucosides/metabolism , Glucose/metabolism , Uridine Diphosphate/metabolism
13.
Front Immunol ; 14: 1164448, 2023.
Article in English | MEDLINE | ID: mdl-37383234

ABSTRACT

Introduction: The conflict between cancer cells and the host immune system shapes the immune tumour microenvironment (TME) in hepatocellular carcinoma (HCC). A deep understanding of the heterogeneity and intercellular communication network in the TME of HCC will provide promising strategies to orchestrate the immune system to target and eradicate cancers. Methods: Here, we performed single-cell RNA sequencing (scRNA-seq) and computational analysis of 35786 unselected single cells from 3 human HCC tumour and 3 matched adjacent samples to elucidate the heterogeneity and intercellular communication network of the TME. The specific lysis of HCC cell lines was examined in vitro using cytotoxicity assays. Granzyme B concentration in supernatants of cytotoxicity assays was measured by ELISA. Results: We found that VCAN+ tumour-associated macrophages (TAMs) might undergo M2-like polarization and differentiate in the tumour region. Regulatory dendritic cells (DCs) exhibited immune regulatory and tolerogenic phenotypes in the TME. Furthermore, we observed intensive potential intercellular crosstalk among C1QC+ TAMs, regulatory DCs, regulator T (Treg) cells, and exhausted CD8+ T cells that fostered an immunosuppressive niche in the HCC TME. Moreover, we identified that the TIGIT-PVR/PVRL2 axis provides a prominent coinhibitory signal in the immunosuppressive TME. In vitro, antibody blockade of PVR or PVRL2 on HCC cell lines or TIGIT blockade on immune cells increased immune cell-mediated lysis of tumour cell. This enhanced immune response is paralleled by the increased secretion of Granzyme B by immune cells. Discussion: Collectively, our study revealed the functional state, clinical significance, and intercellular communication of immunosuppressive cells in HCC at single-cell resolution. Moreover, PVR/PVRL2, interact with TIGIT act as prominent coinhibitory signals and might represent a promising, efficacious immunotherapy strategy in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Granzymes/genetics , Liver Neoplasms/genetics , Sequence Analysis, RNA , Tumor Microenvironment
14.
J Ethnopharmacol ; 307: 116257, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36787845

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Yi-Shen-Hua-Shi (YSHS) granule is an effective prescription widely used in traditional Chinese medicine to treat diabetic kidney disease (DKD), its exact efficacy in treating DKD has been confirmed but the underlying regulatory mechanism has not been fully elucidated. AIM OF THE STUDY: To explore the mechanism by which YSHS granule regulates intestinal flora and serum metabolites and then regulates renal mRNA expression through the "gut-kidney axis", so as to improve DKD. MATERIALS AND METHODS: 40 rats were divided into five groups: Normal group (N) (normal saline), model group (M) (STZ + normal saline), YSHS granule low-dose group (YL) (STZ + 2.27 g kg-1 d-1), YSHS granule high-dose group (YH) (STZ + 5.54g kg-1 d-1) and valsartan group (V) (STZ + 7.38mg kg-1 d-1). After 6 weeks, changes in blood glucose, blood lipids, and renal function related indexes were observed, as well as pathological changes in the kidney and colon. Intestinal microbiota was sequenced by 16S rDNA, serum differential metabolites were identified by LC-MS/MS, and renal differences in mRNA expression were observed by RNA-seq. Further, through the association analysis of intestinal differential microbiota, serum differential metabolites and kidney differential mRNAs, the target flora, target metabolites and target genes of YSHS granule were screened and verified, and the "gut-metabolism-transcription" co-expression network was constructed. RESULTS: In group M, blood glucose, blood lipid and proteinuria were increased, inflammation, oxidative stress and renal function were aggravated, with the proliferation of mesangial matrix, vacuolar degeneration of renal tubules, accumulation of collagen and lipid, and increased intestinal permeability, and YSHS granule and valsartan improved these disorders to varying degrees. High dose of YSHS granule improved the diversity and abundance of flora, decreased the F/B value, greatly increased the abundance of Lactobacillus and Lactobacillus_murinus, and decreased the abundance of Prevoella UCG_001. 14 target metabolites of YSHS granule were identified, which were mainly enriched in 20 KEGG pathways, such as Glycerophospholipid metabolism, Sphingolipid metabolism and Phenylalanine, tyrosine and tryptophan biosynthesis. 96 target mRNAs of YSHS granule were also identified. The enriched top 20 pathways were closely related to glucose and lipid metabolism, of which a total of 21 differential mRNAs were expressed. Further correlation analysis revealed that Lactobacillus, Lactobacillus_murinus and Prevotella UCG_001 were highly correlated with Glycerophospholipid metabolism, Sphingolipid metabolism and Phenylalanine, tyrosine and tryptophan biosynthesis pathways. At the same time, 6 pathways including Glycerophospholipid metabolism, Arachidonic acid metabolism, Purine metabolism, Primary bile acid biosynthesis, Ascorbate and aldarate metabolism and Galactose metabolism were co-enriched by the target metabolites and the target mRNAs of YSHS granule, including 7 differential metabolites such as phosphatidylethanolamine and 7 differential genes such as Adcy3. The 7 differential metabolites had high predictive value of AUC, and the validation of 7 differential genes were highly consistent with the sequencing results. CONCLUSION: YSHS granule could improve DKD through the "gut-kidney axis". Lactobacillus and Lactobacillus_murinus were the main driving forces. 6 pathways related to glucose and lipid metabolism, especially Glycerophospholipid metabolism, may be an important follow-up response and regulatory mechanism.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Rats , Blood Glucose , Chromatography, Liquid , Glucose , Glycerophospholipids , Kidney/physiology , Saline Solution , Sphingolipids , Tandem Mass Spectrometry , Tryptophan , Valsartan , Herbal Medicine
15.
J Appl Genet ; 64(2): 231-245, 2023 May.
Article in English | MEDLINE | ID: mdl-36633756

ABSTRACT

Laportea bulbifera, a Miao medicine grown in karst areas, has exerted a unique curative effect on skin itching in the elderly, with an annual sales of > 100 million Yuan. Owing to the shortage of resources and large morphological variations in L. bulbifera, it is difficult to identify the species correctly using only traditional methods, which seriously affects the safety of drug usage for patients. This study obtained the complete high-quality L. bulbifera chloroplast (cp) genome, using second- and third-generation high-throughput sequencing. The cp genome was 149,911 bp in length, with a typical quadripartite structure. A total of 127 genes were annotated, including 83 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. There was an inverted small single copy (SSC) structure in the L. bulbifera cp genome, one large-scale rearrangement of ~ 39 kb excised in the SSC and IR regions. The complete cp genome sequence is used as a potentially effective super-barcode and the highly variable regions (ycf1, matK, and ndhD) can be used as potentially specific barcodes to accurately distinguish L. bulbifera from counterfeits and closely related species. This study is important for the identification of L. bulbifera and lays a theoretical foundation for elucidating the phylogenetic relationship of the species.


Subject(s)
Genome, Chloroplast , Humans , Aged , Phylogeny
16.
Crit Rev Biotechnol ; : 1-17, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36581326

ABSTRACT

Scutellaria Linn., which belongs to the family Lamiaceae, is a commonly used medicinal plant for heat clearing and detoxification. In particular, the roots of S. baicalensis and the entire herb of S. barbata have been widely used in traditional medicine for thousands of years. The main active components of Scutellaria, including: baicalein, wogonin, norwogonin, scutellarein, and their glycosides have potential or existing drug usage. However, the wild resources of Scutellaria plants have been overexploited, and degenerated germplasm resources cannot fulfill the requirements of chemical extraction and clinical usage. Metabolic engineering and green production via microorganisms provide alternative strategies for greater efficiency in the production of natural products. Here, we review the progress of: pharmacological investigations, multi-omics, biosynthetic pathways, and metabolic engineering of various Scutellaria species and their active compounds. In addition, based on multi-omics data, we systematically analyze the phylogenetic relationships of Scutellaria and predict candidate transcription factors related to the regulation of active flavonoids. Finally, we propose the prospects of directed evolution of core enzymes and genome-assisted breeding to alleviate the shortage of plant resources of Scutellaria. This review provides important insights into the sustainable utilization and development of Scutellaria resources.

17.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6058-6065, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36471930

ABSTRACT

Artemisia indica is an important medicinal plant in the Asteraceae family, but its molecular genetic information has been rarely reported. In this study, the chloroplast genome of A. indica was sequenced, assembled, and annotated by the high-throughput sequencing technology, and its sequence characteristics, repeat sequences, codon usage bias, and phylogeny were analyzed. The results showed that the length of the chloroplast genome for A. indica was 151 161 bp, which was a typical circular four-segment structure, including two inverted repeat regions(IRs), a large single-copy(LSC) region, and a small single-copy(SSC) region, with a GC content of 37.47%. A total of 132 genes were annotated, and 114 were obtained after de-duplication, including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Fifty long repeat sequences and 191 SSRs were detected in the chloroplast genome of A. indica, and SSRs were mainly single nucleotides. Codon usage bias analysis showed that leucine was the most frequently used amino acid(10.77%) in the chloroplast genome, and there were 30 codons with relative synonymous codon usage(RSCU)>1 and all ended with A/U. The phylogenetic tree constructed based on the chloroplast genomes of the 19 species from the Asteraceae family showed that A. indica and A. argyi were closest in the genetic relationship, and Artemisia species clustered into separate evolutionary branches. The results of this study are expected to provide a theoretical basis for the genetic diversity and resource conservation of Artemisia medicinal plants.


Subject(s)
Artemisia , Genome, Chloroplast , Plants, Medicinal , Phylogeny , Artemisia/genetics , Codon/genetics , Base Composition , Plants, Medicinal/genetics
18.
Front Plant Sci ; 13: 1049209, 2022.
Article in English | MEDLINE | ID: mdl-36479523

ABSTRACT

Artemisia Linn. is a large genus within the family Asteraceae that includes several important medicinal plants. Because of their similar morphology and chemical composition, traditional identification methods often fail to distinguish them. Therefore, developing an effective identification method for Artemisia species is an urgent requirement. In this study, we analyzed 15 chloroplast (cp) genomes, including 12 newly sequenced genomes, from 5 Artemisia species. The cp genomes from the five Artemisia species had a typical quadripartite structure and were highly conserved across species. They had varying lengths of 151,132-151,178 bp, and their gene content and codon preferences were similar. Mutation hotspot analysis identified four highly variable regions, which can potentially be used as molecular markers to identify Artemisia species. Phylogenetic analysis showed that the five Artemisia species investigated in this study were sister branches to each other, and individuals of each species formed a monophyletic clade. This study shows that the cp genome can provide distinguishing features to help identify closely related Artemisia species and has the potential to serve as a universal super barcode for plant identification.

19.
Microb Cell Fact ; 21(1): 195, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36123741

ABSTRACT

BACKGROUND: Karst-adapted plant, Lysionotus pauciflours accumulates special secondary metabolites with a wide range of pharmacological effects for surviving in drought and high salty areas, while researchers focused more on their environmental adaptations and evolutions. Nevadensin (5,7-dihydroxy-6,8,4'-trimethoxyflavone), the main active component in L. pauciflours, has unique bioactivity of such as anti-inflammatory, anti-tubercular, and anti-tumor or cancer. Complex decoration of nevadensin, such as hydroxylation and glycosylation of the flavone skeleton determines its diversity and biological activities. The lack of omics data limits the exploration of accumulation mode and biosynthetic pathway. Herein, we integrated transcriptomics, metabolomics, and microbial recombinant protein system to reveal hydroxylation and glycosylation involving nevadensin biosynthesis in L. pauciflours. RESULTS: Up to 275 flavonoids were found to exist in L. pauciflorus by UPLC-MS/MS based on widely targeted metabolome analysis. The special flavone nevadensin (5,7-dihydroxy-6,8,4'-trimethoxyflavone) is enriched in different tissues, as are its related glycosides. The flavonoid biosynthesis pathway was drawn based on differential transcripts analysis, including 9 PAL, 5 C4H, 8 4CL, 6 CHS, 3 CHI, 1 FNSII, and over 20 OMTs. Total 310 LpCYP450s were classified into 9 clans, 36 families, and 35 subfamilies, with 56% being A-type CYP450s by phylogenetic evolutionary analysis. According to the phylogenetic tree with AtUGTs, 187 LpUGTs clustered into 14 evolutionary groups (A-N), with 74% being E, A, D, G, and K groups. Two LpCYP82D members and LpUGT95 were functionally identified in Saccharomyces cerevisiae and Escherichia coli, respectively. CYP82D-8 and CYP82D-1 specially hydroxylate the 6- or 8-position of A ring in vivo and in vitro, dislike the function of F6H or F8H discovered in basil which functioned depending on A-ring substituted methoxy. These results refreshed the starting mode that apigenin can be firstly hydroxylated on A ring in nevadensin biosynthesis. Furthermore, LpUGT95 clustered into the 7-OGT family was verified to catalyze 7-O glucosylation of nevadensin accompanied with weak nevadensin 5-O glucosylation function, firstly revealed glycosylation modification of flavones with completely substituted A-ring. CONCLUSIONS: Metabolomic and full-length transcriptomic association analysis unveiled the accumulation mode and biosynthetic pathway of the secondary metabolites in the karst-adapted plant L. pauciflorus. Moreover, functional identification of two LpCYP82D members and one LpUGT in microbe reconstructed the pathway of nevadensin biosynthesis.


Subject(s)
Apigenin , Flavones , Chromatography, Liquid , Flavones/metabolism , Flavonoids , Glycosides , Glycosylation , Humans , Hydroxylation , Phylogeny , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tandem Mass Spectrometry
20.
Front Biosci (Landmark Ed) ; 27(8): 236, 2022 08 09.
Article in English | MEDLINE | ID: mdl-36042168

ABSTRACT

BACKGROUND: Gentiana plants, which have great medicinal and ornamental value, are widely distributed in diverse habitats and have complex taxonomy. Here 40 Gentiana chloroplast genomes were used for comparative genomic analysis and divergence time estimation. METHODS: The complete chloroplast genome of G. rhodantha was sequenced, assembled, and annotated. Comparative genomic and phylogenetic analysis were provided for variation analysis of Gentiana. RESULTS: Gentiana species satisfy the characteristics of intra-Sect conservation and inter-Sect variation in chloroplast genome structure and IR boundaries. All Gentiana Sects can be clustered into a single one and separated from each other; however, Ser. Apteroideae and Ser. Confertifoliae in Sect. Monopodiae are more closely related to Sect. Frigida and Sect. Cruciata, respectively. Gentiana has experienced two large gene loss events; the first, the collective loss of the rps16 gene at genus formation and the second, the collective loss of the ndh gene when Ser. Ornatae and Ser. Verticillatae completed their differentiation. Comparative genomic analysis support that Sect. Stenogyne and Sect. Otophora became the independent genera Metagentiana and Kuepferia. Seven divergence hotspot regions were screened based on Pi values, and could serve as DNA-specific barcodes for Gentiana. CONCLUSIONS: This study provides a further theoretical basis for taxonomic analysis, genetic diversity, evolutionary mechanism and molecular identification in Gentiana.


Subject(s)
Genome, Chloroplast , Gentiana , Base Sequence , Genome, Chloroplast/genetics , Genomics , Gentiana/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...