Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Immunol ; 211(12): 1767-1782, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37947442

ABSTRACT

Understanding the mechanisms underlying the acquisition and maintenance of effector function during T cell differentiation is important to unraveling how these processes can be dysregulated in the context of disease and manipulated for therapeutic intervention. In this study, we report the identification of a previously unappreciated regulator of murine T cell differentiation through the evaluation of a previously unreported activity of the kinase inhibitor, BioE-1197. Specifically, we demonstrate that liver kinase B1 (LKB1)-mediated activation of salt-inducible kinases epigenetically regulates cytokine recall potential in effector CD8+ and Th1 cells. Evaluation of this phenotype revealed that salt-inducible kinase-mediated phosphorylation-dependent stabilization of histone deacetylase 7 (HDAC7) occurred during late-stage effector differentiation. HDAC7 stabilization increased nuclear HDAC7 levels, which correlated with total and cytokine loci-specific reductions in the activating transcription mark histone 3 lysine 27 acetylation (H3K27Ac). Accordingly, HDAC7 stabilization diminished transcriptional induction of cytokine genes upon restimulation. Inhibition of this pathway during differentiation produced effector T cells epigenetically poised for enhanced cytokine recall. This work identifies a previously unrecognized target for enhancing effector T cell functionality.


Subject(s)
Cytokines , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases , Animals , Mice , Cell Differentiation , Cytokines/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
2.
ACS Chem Neurosci ; 14(5): 947-957, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36780706

ABSTRACT

Reduced haloperidol (1) was previously reported to act as a potent sigma-1 receptor (S1R) ligand with substantially lower affinity to the dopamine D2 receptor (D2R) compared to haloperidol. It was also found to facilitate brain-derived neurotrophic factor (BDNF) secretion from astrocytic glial cell lines in a sigma-1 receptor (S1R)-dependent manner. Although an increase in BDNF secretion may have beneficial effects in some neurological conditions, the therapeutic utility of reduced haloperidol (1) is limited because it can be oxidized back to haloperidol in the body, a potent dopamine D2 receptor antagonist associated with well-documented adverse effects. A difluorinated analogue of reduced haloperidol, (±)-4-(4-chlorophenyl)-1-(3,3-difluoro-4-(4-fluorophenyl)-4-hydroxybutyl)piperidin-4-ol (2), was synthesized in an attempt to minimize the oxidation. Compound (±)-2 was found to exhibit high affinity to S1R and facilitate BDNF release from mouse brain astrocytes. It was also confirmed that compound 2 cannot be oxidized back to the corresponding haloperidol analogue in liver microsomes. Furthermore, compound 2 was distributed to the brain following intraperitoneal administration in mice and reversed the learning deficits in active avoidance tasks. These findings suggest that compound 2 could serve as a promising S1R ligand with therapeutic potential for the treatment of cognitive impairments.


Subject(s)
Haloperidol , Receptors, sigma , Mice , Animals , Haloperidol/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Ligands , Sigma-1 Receptor
3.
ACS Med Chem Lett ; 13(12): 1892-1897, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36518700

ABSTRACT

In the search for alternatives to 6-aminonicotinamide (6AN), a series of 6-aminonicotinic acid esters were designed and synthesized as precursors of 6-amino-NADP+, a potent inhibitor of 6-phosphogluconate dehydrogenase (6PGD). Like 6AN, some of these esters were found to reverse the loss of histone 3 lysine 9 trimethylation (H3K9me3) in patient-derived pancreatic ductal adenocarcinoma (PDAC) distant metastasis (A38-5). Among them, 1-(((cyclohexyloxy)carbonyl)oxy)ethyl 6-aminonicotinate (5i) showed more potent antiproliferative activity than 6AN. Metabolite analysis revealed that compound 5i produced a marked increase in metabolites upstream of 6PGD, indicating intracellular inhibition of 6PGD by 6-amino-NADP+ derived from compound 5i through 6-aminonicotinic acid (6ANA) via the Preiss-Handler pathway. Despite the more potent pharmacological effects shown by compound 5i in A38-5, compound 5i was found to be substantially less toxic to primary hippocampal rat neurons compared to 6AN, indicating its therapeutic potential in targeting distant metastatic cells.

4.
Pharmaceutics ; 14(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36297453

ABSTRACT

Glutamate carboxypeptidase-II (GCPII) is a zinc-dependent metalloenzyme implicated in numerous neurological disorders. The pharmacophoric requirements of active-site GCPII inhibitors makes them highly charged, manifesting poor pharmacokinetic (PK) properties. Herein, we describe the discovery and characterization of catechol-based inhibitors including L-DOPA, D-DOPA, and caffeic acid, with sub-micromolar potencies. Of these, D-DOPA emerged as the most promising compound, with good metabolic stability, and excellent PK properties. Orally administered D-DOPA yielded high plasma exposures (AUCplasma = 72.7 nmol·h/mL) and an absolute oral bioavailability of 47.7%. Unfortunately, D-DOPA brain exposures were low with AUCbrain = 2.42 nmol/g and AUCbrain/plasma ratio of 0.03. Given reports of isomeric inversion of D-DOPA to L-DOPA via D-amino acid oxidase (DAAO), we evaluated D-DOPA PK in combination with the DAAO inhibitor sodium benzoate and observed a >200% enhancement in both plasma and brain exposures (AUCplasma = 185 nmol·h/mL; AUCbrain = 5.48 nmol·h/g). Further, we demonstrated GCPII target engagement; orally administered D-DOPA with or without sodium benzoate caused significant inhibition of GCPII activity. Lastly, mode of inhibition studies revealed D-DOPA to be a noncompetitive, allosteric inhibitor of GCPII. To our knowledge, this is the first report of D-DOPA as a distinct scaffold for GCPII inhibition, laying the groundwork for future optimization to obtain clinically viable candidates.

5.
Bioorg Med Chem Lett ; 50: 128321, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34400301

ABSTRACT

Two distinct diazo precursors, imidazotetrazine and nitrous amide, were explored as promoieties in designing prodrugs of 6-diazo-5-oxo-l-norleucine (DON), a glutamine antagonist. As a model for an imidazotetrazine-based prodrug, we synthesized (S)-2-acetamido-6-(8-carbamoyl-4-oxoimidazo[5,1-d][1,2,3,5]tetrazin-3(4H)-yl)-5-oxohexanoic acid (4) containing the entire scaffold of temozolomide, a precursor of the DNA-methylating agent clinically approved for the treatment of glioblastoma multiforme. For a nitrous amide-based prodrug, we synthesized 2-acetamido-6-(((benzyloxy)carbonyl)(nitroso)amino)-5-oxohexanoic acid (5) containing a N-nitrosocarbamate group, which can be converted to a diazo moiety via a mechanism similar to that of streptozotocin, a clinically approved diazomethane-releasing drug containing an N-nitrosourea group. Preliminary characterization confirmed formation of N-acetyl DON (6), also known as duazomycin A, from compound 4 in a pH-dependent manner while compound 5 did not exhibit sufficient stability to allow further characterization. Taken together, our model studies suggest that further improvements are needed to translate this prodrug approach into glutamine antagonist-based therapy.


Subject(s)
Diazooxonorleucine/analogs & derivatives , Diazooxonorleucine/pharmacology , Glutamine/antagonists & inhibitors , Prodrugs/chemistry , Prodrugs/pharmacology , Diazooxonorleucine/chemistry , Drug Design , Drug Stability , Molecular Structure
6.
Chem Sci ; 12(25): 8859-8864, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34257886

ABSTRACT

The palladium-catalysed tandem aza-Heck-Suzuki and aza-Heck-carbonylation reactions of O-phenyl hydroxamic ethers are reported. These formal alkene carboamination reactions provide highly versatile access to wide range complex, stereogenic secondary lactams and exhibit outstanding functional group tolerance and high diastereoselectivity.

7.
Bioorg Med Chem ; 28(20): 115698, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33069080

ABSTRACT

A series of allosteric kidney-type glutaminase (GLS) inhibitors possessing a mercaptoethyl (SCH2CH2) linker were synthesized in an effort to further expand the structural diversity of chemotypes derived from bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a prototype allosteric inhibitor of GLS. BPTES analog 3a with a mercaptoethyl linker between the two thiadiazole rings was found to potently inhibit GLS with an IC50 value of 50 nM. Interestingly, the corresponding derivative with an n-propyl (CH2CH2CH2) linker showed substantially lower inhibitory potency (IC50 = 2.3 µM) while the derivative with a dimethylsulfide (CH2SCH2) linker showed no inhibitory activity at concentrations up to 100 µM, underscoring the critical role played by the mercaptoethyl linker in the high affinity binding to the allosteric site of GLS. Additional mercaptoethyl-linked compounds were synthesized and tested as GLS inhibitors to further explore SAR within this scaffold including derivatives possessing a pyridazine as a replacement for one of the two thiadiazole moiety.


Subject(s)
Benzene Derivatives/pharmacology , Enzyme Inhibitors/pharmacology , Glutaminase/antagonists & inhibitors , Kidney/enzymology , Sulfhydryl Compounds/pharmacology , Allosteric Site/drug effects , Benzene Derivatives/chemical synthesis , Benzene Derivatives/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glutaminase/metabolism , Humans , Molecular Structure , Solubility , Structure-Activity Relationship , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry
8.
Chemistry ; 25(17): 4330-4334, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30694590

ABSTRACT

An intermolecular asymmetric cascade dearomatization reaction of indole derivatives with propargyl carbonate was developed. The challenges associated with both the chemoselectivity between the carbon and nitrogen nucleophile and the enantioselective control during the formation of an all-carbon quaternary stereogenic center were well addressed by a Pd catalytic system derived from the Feringa ligand. A series of enantioenriched multiply substituted fused indolenines were provided in good yields (71-86 %) with excellent enantioselectivity (91-96 % ee) and chemoselectivity (3/4>19:1 in most cases).

9.
Org Lett ; 20(3): 748-751, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29368933

ABSTRACT

An intermolecular Pd-catalyzed allylic dearomatization reaction of polycyclic indoles with substituted allylic carbonates was realized in the presence of a newly synthesized chiral phosphoramidite ligand. Various polycyclic indoline and indolenine derivatives were successfully synthesized in excellent yields (up to 99%) with excellent enantioselectivity (up to 98% ee). The obtained products could undergo versatile transformations, increasing the application potential of the method in organic synthesis.

10.
Org Biomol Chem ; 14(34): 8044-6, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27511802

ABSTRACT

We have developed Pd-catalyzed intermolecular Friedel-Crafts-type allylic alkylation and allylic dearomatization reactions of substituted indoles bearing a nucleophilic group with vinyloxirane, providing an efficient method to synthesize structurally diverse tetrahydrocarboline and spiroindolenine derivatives under mild conditions.

11.
Chemistry ; 22(33): 11601-4, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27321285

ABSTRACT

Bridged indoline derivatives were synthesized by an intermolecular Pd-catalyzed allylic dearomatization reaction of substituted indoles. The reaction between indoles and allyl carbonates bearing a nucleophilic alcohol side-chain proceeds in a cascade fashion, providing bridged indolines in excellent enantioselectivity.

12.
Org Lett ; 16(15): 3919-21, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24992703

ABSTRACT

Spiroindolenine derivatives were synthesized by intermolecular Pd-catalyzed dearomatization of indoles. The reaction between nucleophile bearing indoles and propargyl carbonate proceeds in a cascade fashion providing spiroindolenines or spiroindolines in good to excellent yields.


Subject(s)
Alkynes/chemistry , Carbonates/chemistry , Indoles/chemistry , Palladium/chemistry , Spiro Compounds/chemical synthesis , Catalysis , Indoles/chemical synthesis , Molecular Structure , Spiro Compounds/chemistry , Stereoisomerism
13.
Chem Commun (Camb) ; 49(67): 7436-8, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23857008

ABSTRACT

The unprecedented reaction of trisubstituted alkenes with iron porphyrin carbenes has been successfully developed. Both multiply substituted 1,3-butadiene and cyclopentadiene products are readily accessible with high efficiency and selectivity in good yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...