Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Med Image Anal ; 89: 102889, 2023 10.
Article in English | MEDLINE | ID: mdl-37467643

ABSTRACT

Due to the cross-domain distribution shift aroused from diverse medical imaging systems, many deep learning segmentation methods fail to perform well on unseen data, which limits their real-world applicability. Recent works have shown the benefits of extracting domain-invariant representations on domain generalization. However, the interpretability of domain-invariant features remains a great challenge. To address this problem, we propose an interpretable Bayesian framework (BayeSeg) through Bayesian modeling of image and label statistics to enhance model generalizability for medical image segmentation. Specifically, we first decompose an image into a spatial-correlated variable and a spatial-variant variable, assigning hierarchical Bayesian priors to explicitly force them to model the domain-stable shape and domain-specific appearance information respectively. Then, we model the segmentation as a locally smooth variable only related to the shape. Finally, we develop a variational Bayesian framework to infer the posterior distributions of these explainable variables. The framework is implemented with neural networks, and thus is referred to as deep Bayesian segmentation. Quantitative and qualitative experimental results on prostate segmentation and cardiac segmentation tasks have shown the effectiveness of our proposed method. Moreover, we investigated the interpretability of BayeSeg by explaining the posteriors and analyzed certain factors that affect the generalization ability through further ablation studies. Our code is released via https://zmiclab.github.io/projects.html.


Subject(s)
Heart , Neural Networks, Computer , Male , Humans , Bayes Theorem , Pelvis , Prostate , Image Processing, Computer-Assisted
2.
Med Image Anal ; 89: 102875, 2023 10.
Article in English | MEDLINE | ID: mdl-37441881

ABSTRACT

Medical images are generally acquired with limited field-of-view (FOV), which could lead to incomplete regions of interest (ROI), and thus impose a great challenge on medical image analysis. This is particularly evident for the learning-based multi-target landmark detection, where algorithms could be misleading to learn primarily the variation of background due to the varying FOV, failing the detection of targets. Based on learning a navigation policy, instead of predicting targets directly, reinforcement learning (RL)-based methods have the potential to tackle this challenge in an efficient manner. Inspired by this, in this work we propose a multi-agent RL framework for simultaneous multi-target landmark detection. This framework is aimed to learn from incomplete or (and) complete images to form an implicit knowledge of global structure, which is consolidated during the training stage for the detection of targets from either complete or incomplete test images. To further explicitly exploit the global structural information from incomplete images, we propose to embed a shape model into the RL process. With this prior knowledge, the proposed RL model can not only localize dozens of targets simultaneously, but also work effectively and robustly in the presence of incomplete images. We validated the applicability and efficacy of the proposed method on various multi-target detection tasks with incomplete images from practical clinics, using body dual-energy X-ray absorptiometry (DXA), cardiac MRI and head CT datasets. Results showed that our method could predict whole set of landmarks with incomplete training images up to 80% missing proportion (average distance error 2.29 cm on body DXA), and could detect unseen landmarks in regions with missing image information outside FOV of target images (average distance error 6.84 mm on 3D half-head CT). Our code will be released via https://zmiclab.github.io/projects.html.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Radiography , Absorptiometry, Photon , Head
3.
IEEE Trans Pattern Anal Mach Intell ; 45(2): 1405-1423, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35349433

ABSTRACT

Modeling statistics of image priors is useful for image super-resolution, but little attention has been paid from the massive works of deep learning-based methods. In this work, we propose a Bayesian image restoration framework, where natural image statistics are modeled with the combination of smoothness and sparsity priors. Concretely, first we consider an ideal image as the sum of a smoothness component and a sparsity residual, and model real image degradation including blurring, downscaling, and noise corruption. Then, we develop a variational Bayesian approach to infer their posteriors. Finally, we implement the variational approach for single image super-resolution (SISR) using deep neural networks, and propose an unsupervised training strategy. The experiments on three image restoration tasks, i.e., ideal SISR, realistic SISR, and real-world SISR, demonstrate that our method has superior model generalizability against varying noise levels and degradation kernels and is effective in unsupervised SISR. The code and resulting models are released via https://zmiclab.github.io/projects.html.

4.
IEEE Trans Pattern Anal Mach Intell ; 44(6): 3224-3238, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33351749

ABSTRACT

The principal rank-one (RO) components of an image represent the self-similarity of the image, which is an important property for image restoration. However, the RO components of a corrupted image could be decimated by the procedure of image denoising. We suggest that the RO property should be utilized and the decimation should be avoided in image restoration. To achieve this, we propose a new framework comprised of two modules, i.e., the RO decomposition and RO reconstruction. The RO decomposition is developed to decompose a corrupted image into the RO components and residual. This is achieved by successively applying RO projections to the image or its residuals to extract the RO components. The RO projections, based on neural networks, extract the closest RO component of an image. The RO reconstruction is aimed to reconstruct the important information, respectively from the RO components and residual, as well as to restore the image from this reconstructed information. Experimental results on four tasks, i.e., noise-free image super-resolution (SR), realistic image SR, gray-scale image denoising, and color image denoising, show that the method is effective and efficient for image restoration, and it delivers superior performance for realistic image SR and color image denoising. Our source code is available online.

SELECTION OF CITATIONS
SEARCH DETAIL